HARDWARE-ORIENTED
MICROPROCESSOR SIMULATOR

(HOMS v.1B)
OPEN-SOURCE PROJECT

Dr. Panayotis (Panos) Papazoglou

8/2024

©OE0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the
license terms.

Under the following terms:

Attribution — You must give appropriate credit , provide a link
to the license, and indicate if changes were made . You may do
S0 in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

NonCommercial — You may not use the material
for commercial purposes.

ShareAlike — If you remix, transform, or build upon the
material, you must distribute your contributions under the same
license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

Contents

CHAPTER 1 - General information

CHAPTER 2 - System description

CHAPTER 3 - Hardware components

CHAPTER 4 - HOMS software & GUI

CHAPTER 5 - System Operation

CHAPTER 6 - Basic Electronic and other components

About the author

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

11

17

12

82

84

HARDWARE-ORIENTED MICROPROCESSOR SIMULATOR
(HOMS v.1B)

At-A-Glance:

A Handmade and Open-Source project

A full-working hardware-oriented simulator

Microprocessor/ Microcomputer simulator

Visual Aids (Contrast adjustment, Brightness adjustment, Braille Labels, Color
selection)

Educational tool

Based on Arduino platform

Easy reproduction

Custom educational scenarios

Suitable for academic teachers and researchers in the field of engineering
education

Keywords
Microprocessor simulator, Arduino-based educational tool, Hardware-oriented simulator,
Open-source simulator

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

CHAPTER 1
General information

The HOMS v.1B system, constitutes a very different approach regarding the
microprocessor simulation and faces effectively the corresponding limitations of the other
relevant tools. Table 1.1 shows some differences between existing tools and the HOMS
system.

Table 1.1

Feature Softwa_re FPGA technology HOMS system

simulation
Hlardware point of NO YES YES
view
Hands on NO YES YES
Complexity LOW HIGH LOW
Architectural
point of view YES NO YES
(component level)
Ease of use YES NO YES
Custom NO YES YES
architecture
_Custom_assembly NO YES YES
instructions
Touch and Feel NO NO YES
Platform type PC PC and board Autonolgngus and

Prior to HOMS system (versions 1 and 1B), a novel hybrid simulation platform has been
proposed in the literature from the same author (Papazoglou, P., 2018). This platform is
based on original designed PCBs with SMD technology. On the other hand, the above
proposed implementation (Papazoglou, P., 2018) has limitations such as board assembly
complexity, high cost, different board technologies and complex operation software. While
the question for replacing microprocessor software simulators with hybrid approaches
remains, a new educational tool for studying microprocessor architecture and
programming has to be proposed for facing effectively all the previous tools limitations
regarding construction, programming and operation complexity.

In this project, a fully working and mature educational tool for learning microprocessors
is proposed for higher education in the field of computer science and computer
engineering. The proposed educational tool faces effectively every limitation of the
previous versions, is based on open-source hardware and can be reproduced by
everyone. Figure 1.1 shows the implementation of the HOMS v.1B tool which is an 8bit
microprocessor/system model. This model consists of similar blocks that represent

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

microprocessor internal components. The HOMS tool has also a memory/output unit for
supporting memory data entry and data output. Is a full working custom system, where
the corresponding developer can build its own assembly language and choose their
desired microprocessor components.

Fig. 1.1 The HOMS v.1B tool

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

CHAPTER 2
System description

2.1 Introduction

A microprocessor consists of various internal units for performing instruction execution.
The internal units interact with each other by exchanging data. On the other hand,
microprocessor fetches instructions from external memory and if needed, the
corresponding results are returned to memory again. For building an operational
microsystem (microcomputer), a microprocessor and a memory unit are needed as well
as an input and an output unit. Figure 2.1 shows a typical model that represents a simple
microprocessor.
Based on this model, the proposed hardware-oriented educational tool (HOMS) consists
of the necessary units that form a simple microprocessor, a memory and supports data
entry in memory as well as data output.

Microprocessor Memory

GPR GPR GPR : 00
Register A Register B Register C 01 02

02 04
03
04
05
06
07

SPR
PC

Communication bus

—— Control bus
Fig. 2.1 Typical components of a single microprocessor

The main goal of a microprocessor is the instruction execution. Instructions are part of
the program which is stored in main memory. Instructions have to be transferred from
memory to microprocessor (fetching) via data bus. The instruction execution procedure
is simplified in steps, as follows (assume that the addition A+B will be performed):

Read PC (Program counter) for finding where the next instruction address is

Store this address to MAR (Memory Access Register) in order to place the desired
memory address on address bus

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

Fetch instruction code via data bus and store this code in MBR (Memory Buffer
register)

Fetch parameter code via data bus and store this code in MBR (Memory Buffer
register)

Decode instruction data and execute, a) copy the contents of registers A and B
to ALU registers T1 and T2 respectively, b) perform the addition T1+T2 and update SR
(Status Register), c) store result to register A

Update PC (Program Counter) for fetching next instruction code from memory
There is no hardware tool/kit in the market that shows the above procedure step by

step. The proposed hardware-oriented tool (HOMS) consists of real hardware

components that represent the microprocessor internal units, as shown in fig. 2.1.

2.2 HOMS tool Overview

The HOMS is a fully working prototype that offers unique features as compared to
similar tools. Table 2.1 summarizes the supported features.

Table 2.1
HOMS tool unique features

Customizable architecture The teacher or student can use any
number or type of blocks for building the
preferred microprocessor architecture.
Block reusability The microprocessor units are based on
the same board (e.g. Arduino UNO). For
example, the HOMS v.1B tool consists of
eight identical blocks. Thus, the
embedded software determines the block
functionality (same block, different
functionality based on software).
Programmable functionality Based on the embedded software, a block
operates like a register or control unit or
ALU or special register, etc.
Experimental architecture Based on the number and type of blocks,
a teacher or student can test a prototype
architecture or to expand an operation to
smaller steps by using more blocks.
Assembly instructions development The existing blocks support functionality
that is controlled by the control unit. The
HOMS user is free to build any assembly
instruction which is supported by the
software inside control unit.

Student skills emerge Block building and assembly instructions
can be developed by students. Students

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

use their mind and hands and learn to
perform accurate manipulations and
movements to bring the hardware to life.

Educational scenarios

Using the default HOMS tool architecture,
teachers can develop the desired
assembly instructions for building different
educational scenarios. Based on the
embedded software (inside blocks), the
behavior of the blocks can be adapted to
the desired educational scenarios.

Complete approach

Using the HOMS v.1B tool, the
microprocessor can be approached from
many different points of view/operation:

a) a programmer/user develops and
tests assembly code using
exclusively the available system
instructions

b) a software/hardware developer
adapts the embedded software for
supporting the desired
microprocessor
functionality/operation

c) ateacher or student selects the
desired blocks and builds an
entirely new architecture

d a student is simply
watching/studying the instruction
execution procedure/sequence

Multiple points of view

Based on the different points of view as
mentioned previously, every student can
extract information from the desired
microprocessor feature.

Hardware point of view

The HOMS tool, emphasizes the hardware
layer which is hidden in the existing
simulation tools. Thus the “connection” of
instruction, operation and hardware
implementation is more clear in the
student’s minds.

Standalone tool

The HOMS v.1B tool does not need a PC
and can be operated autonomously. Thus,
constitutes a mobile laboratory system
unit.

Easy reproduction

The hardware components of the HOMS
tool can be found easily in any market. On
the other hand, the multiple identical

© Panayotis (Panos) PapazogloulRIe]VISRANR:]

blocks support easily the reproduction
procedure.

Open features

The main advantage of the implemented
HOMS tool is the object-oriented approach
and the open-source hardware which
gives the freedom to any developer not
only to reproduce the same tool but also to
implement the whole simulator using
different blocks (with or without an LCD,
buttons, etc). Note that the embedded
software makes the difference.

Based on the mentioned functionality and features, it is obvious that the HOMS v.1B tool
is more suitable for laboratory exercises in higher education in the field of computer
science and engineering. Laboratory academic stuff may use the proposed prototype
HOMS tool for building multiple boards and fully support a semester course.
Moreover, the existing HOMS tool can be extended under the development of a
thesis or a lab assignment or even under a research program for exploring new
methods and tools in engineering education.

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

CHAPTER 3
Hardware components

3.1 Microprocessor blocks

Figure 3.1 shows the hardware block types that are used as internal microprocessor
components and external memory. There are two types of blocks: a) Register blocks
(Register-A, Register-B, Prog. Counter, MAR and MBR), b) Special blocks (Control Unit,
ALU/SR and Memory-1/O). All blocks are based on Arduino UNO. Register blocks use
seven-segment displays and special blocks use TFT color displays.

(il :

L
RESET o @g RgT A)
g 0=00=010=0l0=0 §
@;: HEHEH 2
& 3

Spe(;lal _

@ Unit Buttonl Buttonz@ @ RegISter %

Fig. 3.1 Block/Component types

Figures 3.2 and 3.3 show the circuit connections between Arduino UNO and the seven-
segment module as well as the corresponding physical implementation. The seven-
segment module is based on TM1637. The same implementation is used for Registers A,
B, PC (Prog. Counter), MAR and MBR.

Register |

!
) e e e e s | e e
8 7 0

Seven-segment display

S m
g .2 9
[|:| o @@L -5
| e | | v~ |~ | s | o [e | s | | s s | s |

RESET':i|_.)
Brightness

Fig. 3.2 Register circuit

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

aaaaaaa

w20z/9
877 333/01d SHOH
J6norbozededsoued:suion

Addr: 5
Fig. 3.3 Physical implementation (e.g. MAR

> 1 ...,;f".

register)

As shown in fig. 3.2, one Reset button and a brightness adjustment knob are used. The
Reset button connects the RESET pin of Arduino to GND and the POT is used as variable
resistor for controlling the current flow in 5V line. Thus, no code is needed for the
corresponding operation of the button and the brightness knob.

Figures 3.4 and 3.5 show the circuit of the special block as well as the corresponding

physical implementation. The same implementation is used in special blocks such as
Control Unit, Memory-I/O and ALU/SR.

Special
Block I - Buttonl Button2
1 VCC

O I ey
913121110 9 8 7 5 4 0
o

TFT Display

POT

RESET

Background Text

Fig. 3.4 Special block circuit

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

Fig. 3.5 Physical implementation (e.g. MEM-I/O Unit)

As shown in fig. 3.4, there are three buttons and two POTs. One button is for resetting
Arduino and the other two for user selection based on display instructions. The button
operation is supported through the pull-up internal resistors of the microcontroller that are
activated within the code. On the other hand, two POTSs are used for adjusting background
color and text color respectively. The POTs are connected to analog inputs A0 and Al.
When the POT in AO is turned all the way left the resulting color is BLACK and if the POT
is turned all the way right, then the resulting color is WHITE. For any other position of the

POT, the resulting color has a predefined color value. Thus, High-Contrast display can
be achieved.

3.2 RGB LED-Strip frame

Figure 3.6 shows the RGB LED-Strip frame around the suitcase and fig. 3.7 the
physical view of the installed hardware components.

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

Figure 3.8 shows the electrical circuit for controlling the RGB LED-Stripe. Note that the
external power supply gives power also to Arduino. Thus, the RGB LED-Strip frame does
not depend on the HOMS system.

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

RGB LED-Strip control
|
O e II8II e II0I

m a O
[:| . e = RGB LED-Stri
() S oin o -Strip
= HOACCIACI R ACIFCIRCIADIE
External
% o e Power supply
1

DC AC
out Power Line
GND

Fig. 3.8 RGB LED-Strip control circuit

3.3 PCB design (optional)

For simplifying the register block assembly, a PCB has been designed as Arduino
shield. The shield hosts the seven-segment module without the need for wiring and can
be plugged directly to Arduino pin-sockets. The PCB was designed for hosting the two-
digit seven-segment (RED) from the version 1 of the HOMS system. Figure 3.9 shows
the PCB-Shield connected to Arduino for hosting the seven-segment display from the
version 1 of HOMS system.

0600900
/,J hom&p:nospa&gz:glgu._g:

Fig. 3.9 Arduino shield for two-digit seven segment display

After some tests, the final decision was to replace the two-digit RED display with a four-
digit BW display, but the pins of the new display did not match the pins of the shield
(different dimensions and different pins). The double 5V and GND pins of the shield
regarding the display module was not connected together, because this is achieved
through the module itself. For solving this problem, two wires are installed for connecting
the pins together (5V-5V and GND-GND). On the other hand, the new display module
has four pins and not five like the two-digit module. For matching fewer pins, power and

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

data/clock lines, the new module has been placed with 180 degrees of rotation. Figure
3.10 shows the two soldered wires for 5V and GND.

e b ol i el o [Ta (1T alle 1ol i lellalle)

i B 445 44
AU W A A

0000000 0O00O0CO0O00O00CC

Fig. 3.10 Additional wires for the new module

After the necessary shield modifications, the four-digit module is finally installed (fig.
3.11).

Fig. 3.11 Using the PCB shield for installing the new seven-segment module

Important note: please visit the web site of the HOMS project for finding the
experimental version of the PCB design.

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

CHAPTER 4
HOMS software & GUI

Important note 1. only indicative instructions and operations have been
implemented in the following source-codes for supporting basic system
functionality.

Important note 2: the only code updates as compared to HOMS v.1 are mainly for
supporting the new display modules (four digit seven-segment display and TFT
display) as well as the new messages that can be displayed in the larger TFT of 2.4
inches.

4.1 Register Unit

Every register Unit (Register block, fig. 4.1) contains identical code for supporting
instructions (operations) such as LOAD, READ, INC, DEC, SHIFT and RESET. Three
basic functions (fig. 4.2) support the 1°C communication (onReceive, onRequest) and
seven-segment display operation (display).

%Z02/9

TA ¥
Jnoibaededsoust S

Fig. 4.1 Register Unit (e.g. MAR)

When a single byte is received for executing an instruction regarding the register content,
the function onReceive is activated (interrupt-based process). On the other hand, when
the control unit requests an answer (e.g. READ register content), the function onRequest
is activated (interrupt-based process). Finally, the function display is activated when the
seven-segment display value has to be updated.

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

(Register bIock)

A 4 Y Y

onReceive onRequest display

Fig. 4.2 Register functions

Figure 4.3 shows the operation of the function onReceive. In the case of the LOAD
instruction, two bytes are used: one for the LOAD instruction (previous byte) and one for
the value (current byte) that will be stored in the register. The function checks always the
instruction code value for executing the corresponding operation (fig. 4.3).

- —
f\on Receive

// _\“\.\
ves ~Previous~ o
—< instruction =

“~_LOAD?
\\ H
v \/
REG=Received byte
4...

Previous byte =

INC current byte
v |
REG=REG+1 Instruction
DEC RESET
is Sy REG=0
; (received
REG=REG-1 byte) SHIFT LEFT
SHIFT RIGHT i
D
REG=REG=>>1 display REG REG=REG<=<1
content
p)
(EXIT)

Fig. 4.3 onReceive function operation

Figure 4.4 shows the operation of the function onRequest.

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

~

nGnRequest-

Send REG content
through 12C channel

Pti
(EXIT)
o J

Fig. 4.4 onRequest function operation

SOURCE-CODE:

LICENSE:

#tdefine ADDRESS 6

#tinclude <Arduino.h>
#include <TM1637Display.h>

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

#tdefine CLK 9
#tdefine DIO 8

TM1637Display display(CLK, DIO);
uint8_t data[] = { ox00, 0x00, 0x00, 0x00 };

//Include I2C library
#tinclude <Wire.h>

//Define symbolic names for instructions codes
//between blocks
#tdefine READ 65
#define RESET 66
#tdefine SHIFT L 67
#tdefine SHIFT R 68
#define DEC 69
#tdefine INC 70
#tdefine LOAD 71
#define IDON 99
#tdefine IDOFF 98
#define IDOK 97

int identify = 0;

//byte that is received via I2C communication
byte rV;

//Previous received byte. Is used when a sequence of bytes
//has to be checked
byte rVprev = 0;

//Initial register content
byte REG = Oxff;

//Starting function (after reset or power on), runs once
void setup() {

display.setBrightness(0xof);
//Initialize Serial communication
//for displaying debugging messages
Serial.begin(9600);
Serial.println("hello from MBR");

//Display register content

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

displayR(REG);

//Initialize I2C communication:

//Set address

//Enable ISR for receiving bytes and requests
Wire.begin(ADDRESS);
Wire.onReceive(onReceive);
Wire.onRequest(onRequest);

void loop() {
//Nothing here

}

/***

Action Routine that is activated when
a byte is received
**/

void onReceive(int a)

//Read received byte

rV = Wire.read();

Serial.println("Byte received!");

//If previous byte is 71 (LOAD), then the current byte
//1is the value that will be loaded in register

if (rVprev == LOAD) REG = rV;

//Update variable for previous value
rVprev = rV;

//Actions based on received byte
if (rV == INC) REG++;
if (rV == DEC) REG--;

if (rV == SHIFT_R) REG = REG >> 1;
if (rV == SHIFT_L) REG = REG << 1;
if (rV == RESET) REG = 00;

//Display register content after performed action
displayR(REG);

/***

Action Routine that is activated when

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

a request is received
**/

void onRequest() {

//If the received byte represents
//the READ command, then the
//register content is sent as answer
if (rV == READ) Wire.write(REG);

if (rV == IDON) Wire.write(IDOK);

//Display register content
displayR(REG);
}

/***

Display register content as HEX number on
seven segment module

Digit manipulation for left and right
seven segment display unit

**/

void displayR(byte REGnum) {

//Convert decimal number REGnum to HEX
String Shex = String(REGnum, HEX);

//Variables for left and right digit
char LL;
char RR;

//I1f the hex number has only one digit, then
//the left digit is zero ('@') and the right digit
//is the first character of the string Shex
if (Shex.length() == 1) {
LL = '0’";
RR = Shex[0];
¥

//0Otherwise, update left and right digit variables from
//the whole string Shex

else {
LL = Shex[0];
RR = Shex[1];
}

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

byte left, right;

if (LL >= 'a' & LL <= 'f') left = LL - 87;
else if (LL >= '@' && LL <= '9") left = LL - 48;

if (RR >= "a' & RR <= 'f') right = RR - 87;
else if (RR >= '@' &% RR <= '9') right = RR - 48;

display2(left, right);

void display2(int di1, int d3) {
display.clear();
data[1] = display.encodeDigit(dl);
data[3] = display.encodeDigit(d3);
display.setSegments(data);

4.2 Arithmetic & Logic Unit (ALU) and Status Register (SR)

In current code version, only the ADD instruction is implemented.

Fig 4.5 ALU-SR unit

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

The result is displayed on the TFT screen (fig 4.5) and the Status Register is updated.
The result is available inside the CPU model (simulator) through the internal data bus.

The following pseudo-code represents the above steps for the main function operation:

START

Béte received?

* Instruction=ADD

WY E S

* * T1=Read Register A

* * T2=Read Register B

* * Result=T1+T2

* * Update Status Register (SR)
* * Display REG content

*

*

END

The status register (SR) is declared as a three element array (byte SR[]={0,0,0};)

SOURCE-CODE:

LICENSE:

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

#tdefine ADDRESS 9

//Include I2C library
#include <Wire.h>
#define FREQ 10000
//new tft section

#define ILI9341 BLACK 0x0000
#define ILI9341 BLUE Ox001F
#tdefine ILI9341 WHITE OXFFFF

#include "SPI.h"
#include "Adafruit_GFX.h"
#include "Adafruit_ILI9341.h"

//TFT pins

#tdefine TFT_CLK 13
#define TFT_MISO 12
#define TFT_MOSI 11
#tdefine TFT_DC 7
#define TFT_CS 10
#define TFT_RST 8

Adafruit_ILI9341 tft = Adafruit ILI9341(TFT_CS, TFT_DC, TFT_MOSI, TFT_CLK,
TFT_RST, TFT_MISO);

//This UNIT Receives/Sends commands from/to other units as bytes
#tdefine READ 65

#tdefine ADD 72

#tdefine IDON 99

#tdefine IDOFF 98

#tdefine IDOK 97

#define GREEN_button 4
#define RED button 5

//Variable that is used inside ISR
volatile byte rvTRUE = 0;

//Byte received from other units
byte rV;

//Store result of the numerical calculation
byte result = 0;

[HOMS v.1B

//Store the content of temporarily registers T1 and T2
byte T1 = 0;
byte T2 0;

//Flag array
byte SR[] ={ 0, 0, 0 }; //VF (oVerflow), ZF (Zero), SF (Sign)

int bcolor = ILI9341 BLACK, fcolor = ILI9341 WHITE;

//Starting function (after reset or power on), runs once
void setup() {

init_buttons();
tft.begin();
tft.setRotation(135);

//Read POT for background color
bcolor = analogRead(0);

if (bcolor < 50) bcolor = ILI9341 BLACK;
else if (bcolor > 975) bcolor = ILI9341 WHITE;
else

bcolor = ILI9341 BLUE;

//Read POT for text color
fcolor = analogRead(1);

if (fcolor < 50) fcolor = ILI9341 BLACK;
else if (fcolor > 975) fcolor = ILI9341 WHITE;
else

fcolor = ILI9341 YELLOW;

tft.fillScreen(bcolor);

//Start I2C communication
Wire.begin(ADDRESS);
Wire.setClock(FREQ);

//Activate Receive & Request ISR routines
Wire.onReceive(onReceive);
Wire.onRequest(onRequest);

//Display result and flag status
DISPLAY RES();

[HOMS v.1B

void loop() {
//If a byte is received and is an ADD command,
//then execute addition between the contents of Registers A and B
//Store result in a variable, update SR[] array
//and display result/SR contents

if (rvTRUE == 1) {
if (rv == ADD) {
T1 = READ_REG(1);
delay(100);
T2 = READ_REG(2);
result = T1 + T2;
UPDATE_SR(result);
DISPLAY_RES();

}
rvTRUE = ©;

/***

ISR routine
Is activated when a byte is received
via I2C communication
**/
void onReceive(int a) {

rV = Wire.read();

//Flag for activating code in order to read Reg. A and REg. B contents
//12C functions can not be called within an active I2C routine
rvTRUE = 1;

/***

ISR routine
Is activated when a request is received
via I2C communication
**/
void onRequest() {
//Send result (ALU calculation) as answer to an I2C request

if (rV == IDON) Wire.write(IDOK);
else
Wire.write(result);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

/***

Read the content of a Register
with address addr
**/
byte READ_REG(int addr) {

byte ans;

Wire.beginTransmission(addr);
Wire.write(READ);
Wire.endTransmission();

//Receive answer
Wire.requestFrom(addr, 1);
if (Wire.available())

ans = Wire.read();

return ans;

/***

Update Status Register Flags based
on result status
**/

void UPDATE_SR(byte res) {

if (res == @) SR[1] = 1;
else SR[1] = ©;
if (res < @) SR[2] = 1;
else SR[2] = ©;
if (res > 255) {

SR[@] = 1;

result = 9;
} else SR[@] = 0O;

/***

Display result and Status Register Flags
on LCD screen
**/

void DISPLAY_RES() {

display(60, 10, 5, @, "ALU/SR");
int y = 80;

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

display(10, vy, 4, 0, "RES10=");
display (160, y, 4, 0, String(result));

y += 50;
display(10, y, 4, 0, "HEX=");
display(110, y, 4, 0, String(result, HEX));

y += 50;

display(10, vy, 4, 0, "V:");
display(60, y, 4, @, String(SR[0]));
display(11e, y, 4, 0, "Z:");
display(160, vy, , String(SR[1]));
display(210, vy, "S:");
display(260, vy, , String(SR[2]));

J

-

b b
-
o O© 0

/***

Unit title
**/
void tft_welcome() {

tft.fillScreen(bcolor);

display(30, 50, 4, ILI9341 GREEN, "Memory Unit");
}

/***

Display text on TFT
on LCD screen

col: column

row: row

txsize: text size

txcolor: not used here (optional for debugging purposes)
val: text to be displayed

**/

void display(int col, int row, int txsize, int txcolor, String val) {

tft.setCursor(col, row);
tft.setTextSize(txsize);
tft.setTextColor(fcolor);
tft.print(val);

/***

Initialize buttons by activating
internal pull-up resistors

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

void init buttons() {
pinMode (GREEN button, INPUT_PULLUP);
pinMode (RED_button, INPUT_PULLUP);

}

Important note: The GREEN_button and RED_button pins in source code,
represent the Left and Right buttons in current hardware blocks respectively (the
GREEN and RED buttons were used in HOMS version 1).

4.3 Memory and 1/O system

The HOMS system executes the assembly instructions that are stored inside the
memory. Thus, a memory system is implemented. Additionally, the HOMS supports user
input for entering assembly instructions in memory through a computer-based application.
Instructions are entered within the GUI environment and then are uploaded to memory
unit through the USB connection. Also, a demo instruction is already stored inside the
memory unit, and thus can be executed without the need of a computer.

MEMORY LUHIT

OEMO ot LUFLORDY

LEFT FIGHT
o DEMO —— Cob LURLOAD?

Fig. 4.6 MEM, I/O unit

SOURCE-CODE:

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

Hardware-Oriented Microprocessor
Simulator

(C) Panayotis (Panos) Papazoglou
https://homs.panospapazoglou.gr/

LICENSE:
Creative Commons
CC BY NC SA

International License
**/

#define ILI9341_BLACK ©x0000
#define ILI9341_DARKGREEN ©Ox@3E0
#define ILI9341_GREEN ©xO7E0
#define ILI9341_WHITE OXFFFF

#include "SPI.h"
#include "Adafruit_GFX.h"
#include "Adafruit_ILI9341.h"

//TFT pins

#define TFT_CLK 13
#define TFT_MISO 12
#define TFT_MOSI 11
#define TFT_DC 7
#tdefine TFT_CS 10
#define TFT_RST 8

Adafruit_ILI9341 tft = Adafruit ILI9341(TFT_CS, TFT_DC, TFT_MOSI, TFT_CLK,
TFT_RST, TFT_MISO);

//Include I2C library
#include <Wire.h>
#tdefine FREQ 10000

//Set symbolic names for button/LED pins
#define GREEN_button 4
#define RED_button 5

//A byte is read from memory when the LOAD command is received
#define LOAD 71

#define ADDRESS 11

#define IDON 99

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

#tdefine IDOFF 98
#tdefine IDOK 97

int bcolor = ILI9341 BLACK, fcolor = ILI9341 WHITE;

//Memory: 256 locations, starting address 0, ending address 255 (FF hex)
int mem[256];

//Serial received string

String rs = "";

//variables for serial communication

int i = 9;
int ¢ = 0;
int r = 40;

//Received data from control unit
byte rV = 0;

//Previous received data from control unit
byte rVprev = 0;

//Flag that is activated when an address is received
byte ADDRflag = O;

//Declare next array if you want to have a preloaded code in memory
byte prog[] = { 4, 3, 17, @ }; //MOV A,4 ; HALT

//Variable for choosing demo mode or upload from PC
int demo = 9;

//Starting function (after reset or power on), runs once
void setup(void) {

Serial.begin(9600);

Serial.println("HELLO!");

init_buttons();

//Read POT for background color

bcolor = analogRead(9);
Serial.print("bcolor=");
Serial.println(bcolor);

if (bcolor < 50) bcolor = ILI9341 BLACK;

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

else if (bcolor > 975) bcolor = ILI9341 WHITE;
else
bcolor = ILI9341 GREEN;

//Read POT for text color
fcolor = analogRead(1);
Serial.print("fcolor=");
Serial.println(fcolor);
if (fcolor < 50) fcolor = ILI9341 BLACK;
else if (fcolor > 975) fcolor = ILI9341 WHITE;
else

fcolor = ILI9341 BLACK;

//initialize I2C communication (address 11)
Wire.begin(ADDRESS);
Wire.setClock(FREQ);

//Initialize TFT
tft.begin();
tft.setRotation(135);

tft_welcome();

//Enable ISR routines for receiving bytes and requests
Wire.onReceive(onReceive);
Wire.onRequest(onRequest);

//Initialize Serial communication
//for displaying debugging messages
Serial.begin(9600);

init_mem(256);

demo_or_upload();

if (demo) {
set_prog();

tft.fillScreen(bcolor);

display(50, 30, 4, 9, "D EM 0");
display(40, 70, 3, 0, "Instruction:");
display(50, 100, 3, @, "MOV A,3");
display(20, 160, 3, 0, "Use CU to start");

while (1);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

tft.fillScreen(bcolor);
display(50, 100, 3, ILI9341 WHITE, "Waiting for");
display(70, 150, 3, ILI9341 WHITE, "Upload...");

/***

Main function (always active)
**/

void loop(void) {

//Section added for serial communication with the PC
if (Serial.available() > 0) {
rs = Serial.readStringUntil('\n");
if (rs == "new") {
tft.fillScreen(bcolor);

i=0;

c = 0;

display(15, @, 3, ILI9341 BLUE, "Prog. bytes:");
while (rs != "end") {

if (Serial.available() > @) {
rs = Serial.readStringUntil('\n'");
mem[i] = rs.toInt();
if (c > 300) {
r += 40;

if ((mem[i] == 0) && (i % 4 == 0)) {
display(c, r, 2, ILI9341 WHITE, rs);
C += 30;

}

if (mem[i] > @) {
display(c, r, 2, ILI9341 WHITE, rs);

Cc += 30;
}
if (mem[i] == 17) rs = "end";
i++;

}

}
display(15, 100, 3, ILI9341 GREEN, "Upload complete");

display(20, 150, 3, ILI9341 RED, "Use CU to start");

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

rs = "stop";

else if (rs = "ready") {
Serial.println("Sending from arduino...");
for (int p = 0; p < i; p++) {
//Serial.println("Hello from Arduino"); rs="stop";
Serial.println(mem[p]);

}

/***

initialize memory with size of locations

locations: total array locations
**/

void init_mem(int locations) {
for (int i = @; i < locations; i++)
mem[i] = O;

/***

When data are received from control unit
**/

void onReceive(int a)

rV = Wire.read();
Serial.print("rv:");
Serial.println(rV);

//If previous command is LOAD, then the current byte represents an address
if (rVprev == LOAD) ADDRflag = 1;
rVprev = rV;

/***

When data are requested from control unit
**/

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

void onRequest() {
//If the contents of an address are requested
if (ADDRflag == 1) {
Serial.println("ADDRflag=1");
Serial.print("rv:");
Serial.print(rVv);
Serial.print(", content:");
Serial.println(mem[rV]);
Wire.write(mem[rV]);
ADDRflag = ©;
rVprev = 0;
}
if (rV == IDON) Wire.write(IDOK);
}

/***

Preload program bytes in memory.
Update mem[] array from prog[] array
**/
void set_prog() {

for (int 1 = 0; i < 4; i++) mem[i] = prog[i];

}

/***

Unit title
**/
void tft_welcome() {

tft.fillScreen(bcolor);

display(30, 50, 4, ILI9341 GREEN, "MEMORY UNIT");

}

/***

Display text on TFT
on LCD screen

col: column

row: row

txsize: text size

txcolor: not used here (optional for debugging purposes)
val: text to be displayed

**/

void display(int col, int row, int txsize, int txcolor, String val) {

tft.setCursor(col, row);
tft.setTextSize(txsize);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

tft.setTextColor(fcolor);
tft.print(val);
}

/***

User selects Demo or Upload from PC
ok kR kR Rk kR Rk ok ok

void demo_or_upload() {

display(20, 100, 3, ILI9341 WHITE, "DEMO or UPLOAD?");
display(50, 150, 2, ILI9341_YELLOW, "LEFT RIGHT");
display(20, 180, 2, ILI9341 GREEN, "(o) DEMO -- (o) UPLOAD?");

int Gb HIGH;

int Rb = HIGH;

while ((Gb == HIGH) & & (Rb == HIGH)) {
Gb = digitalRead(GREEN_button);
Rb = digitalRead(RED_button);

if (Gb == LOW) demo = 1;
else
demo = 9;

/***

Wait for user input
**/
void next(String txt) {
display(@, ©, 4, ILI9341 WHITE, "(o) Next (o)--");
while (digitalRead(GREEN_button) == HIGH) { ; }
}

/***

Initialize PULL-UP resistors
Every button is activated when
a PULL-UP pin goes to LOW (GND)
**/
void init_buttons() {
pinMode (GREEN_button, INPUT_PULLUP);
pinMode (RED_button, INPUT_PULLUP);

}

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

Important note: The GREEN_button and RED_button pins, represent the Left and
Right buttons in current block respectively (the GREEN and RED buttons were
used in HOMS version 1).

4.4 Control Unit (CU)

The control unit constitutes the most important component of the HOMS system. This
unit fetches instruction data from the memory unit, decodes each instruction (type and
parameters) and finally sends commands to other components for supporting the
execution cycle.

In other words, synchronizes the HOMS components operation for supporting a fully
working system regarding the instruction execution. The required steps for each
instruction execution are implemented within the CU.

Important note: For creating new assembly instructions, new source code has to
be added inside the CU.

— 163

CONTROL UNIT

Initialize?
{Clear Registers)

next>?

Fig. 4.7 CU unit

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

/Main CU
\Process‘_._

B

/""».\
-
.

~instruction NO
&:- 172

YES

Read Program
Conter (PC)

Store PC content to
Memory Access
Register (MAR)

!

Fetch one byte from
the memory location
[MAR]

Increase MAR
by one

i

Fetch one byte from
the memory location
[MAR]

;

Decode and execute
instruction

v

Update PC

v

v

Va—— _“\
|_ END ,/"‘

Fig. 4.8 Execution process

The flow chart (fig 4.8) shows the whole procedure for (a)
fetching instruction data from memory and (b) executing
instruction through the control unit. This procedure can be
described in steps as follows:

Read PC (Program counter) for finding where the
next instruction address is

Store this address to MAR (Memory Access
Register) in order to place the desired memory address on
address bus

Fetch instruction code via data bus and store this
code in MBR (Memory Buffer register) and increase MAR by
one

Fetch parameter code via data bus and store this
code in MBR (Memory Buffer register)

Decode instruction data and execute, a) copy the
contents of registers A and B to ALU variables T1 and T2
respectively, b) perform the addition T1+T2 and update SR
(Status Register), c) store result to register A

Update PC (Program Counter) for fetching next
instruction code from memory

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

SOURCE-CODE:

[FH AR A K KKK KKK KKK KR KK KR K K KR K ok K

CONTROL UNIT

I2C MASTER

5 5k 5k 5k 5k sk sk sk sk sk sk 5k 3k 3k sk 3k ok ok ok 5k 5k 5k 5k 3k sk sk sk sk sk sk sk 3k 3k 3k ok ok ok ok ok 5k k Kk k
HOMS version 1B

Hardware-Oriented Microprocessor

Simulator

(C) Panayotis (Panos) Papazoglou
https://homs.panospapazoglou.gr/

LICENSE:

Creative Commons

CC BY NC SA

International License

sk o s ok ok ok sk sk sk s ok ok sk sk sk sk koo ok ok okskskskokok ok ok ok sk sk skokok ko ok ok
//Please ignore any compilation warnings

//due to function overload (the same function name
//can be used but with different parameters).
//the MCU executes the function which matches
//with parameters

//Define symbolic names for sending commands to other blocks
//The I2C communication is based on one byte transmit/receive
#define READ 65

#define RESET 66

#define SHIFT L 67

#define SHIFT_R 68

#define DEC 69

#define INC 70

#define LOAD 71

#define ADD 72

#define IDON 99

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

#tdefine IDOFF 98
#tdefine IDOK 97

//Set symbolic names for button/LED pins
#define GREEN_button 4

#define RED_button 5

//#define GREEN_LED 10

//#define RED LED 9

//Include I2C library
//The I2C function are called using the prefix Wire.
#include <Wire.h>

#tdefine FREQ 10000
//new tft section

#define ILI9341 BLACK 0x0000
#define ILIS9341 RED OxF800
#define ILI9341 WHITE OXFFFF

#include "SPI.h"
#include "Adafruit GFX.h"
#include "Adafruit_ILI9341.h"

//TFT pins

#define TFT_CLK 13
#define TFT_MISO 12
#define TFT_MOSI 11
#define TFT_DC 7
#define TFT_CS 10
#define TFT_RST 8

Adafruit_ILI9341 tft = Adafruit ILI9341(TFT_CS, TFT_DC, TFT_MOSI,
TFT_CLK, TFT_RST, TFT_MISO);

//Declare variables for the needs of the CU unit (locally)
byte RA = 0;
byte RB = 0;

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

byte RC = 0;
byte PC = 0;
byte MAR = 0;
byte MBR = 0;
byte T1l = 0;
byte T2 = 0;
byte RS = 0;

byte command = 9;
byte param = 0;
String hexval = "";
int blockADDR;

//Delay between execution process steps
int d = 3000;

int bcolor = ILI9341 BLACK, fcolor = ILI9341 WHITE;

//Starting function (after reset or power on), runs once
void setup() {
//Initialize Serial communication
//for displaying debugging messages
Serial.begin(9600);

init_buttons();
tft.begin();
tft.setRotation(135);

//Read POT for background color
bcolor = analogRead(9);
Serial.print("bcolor=");
Serial.println(bcolor);
if (bcolor < 50) bcolor = ILI9341 BLACK;
else if (bcolor > 975) bcolor = ILI9341 WHITE;
else

bcolor = ILI9341 RED;

//Read POT for text color
fcolor = analogRead(1);
Serial.print("fcolor=");

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

Serial.println(fcolor);
if (fcolor < 50) fcolor = ILI9341 BLACK;
else if (fcolor > 975) fcolor = ILI9341 WHITE;
else
fcolor = ILI9341 WHITE;

//Initialize I2C communication
Wire.begin();
//Wire.setClock(FREQ);

//Initialize buttons & LED-buttons
init_buttons();

Serial.println("init ok");

//Display first message and read user input
run();

//Initial value for entering the while loop
command = 0;

//Clear registers (content=00)
//Wait for RED button to start execution
INIT();

/****************************

MAIN EXECUTION PROCESS

*****************************/

while (command != 17) {

READ_PC(); //Read PC content for instruction starting
address

PC2MAR(); //Update MAR for accessibg memory address

FETCH1(); //Fetch 1st byte from memory (instruction code)

UPDATE_MAR(); //Update MAR for fetching 2nd byte

FETCH2(); //Fetch 2nd byte (instruction parameter)

DECODE_EXEC(); //Decode instruction and execute
UPDATE_PC(); //Update PC content for next instruction

next("Next >>");

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

//0ut of while loop. The following code is executed when
instruction code is 17

//which corresponds to STOP instruction

tft.fillScreen(bcolor);

display(50, 100, 3, ©, "END OF PROGRAM");

display(50, 150, 3, O, "EXECUTION");

} //End of SETUP

[sk sk sk ok ok sk sk ok ok sk sk ok ok ok sk sk sk ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk ok ok ok ok ok

READ PC (Program Counter), PC block address=4
>|<*>|<*****>|<*>|<*****>|<*>|<*************************/

void READ PC() {
//Display message on LCD
tft.fillScreen(bcolor);
display(50, 30, 4, @, "READING");
display(4e, 70, 3, @, "Prog. Counter");
display(4e, 110, 3, 0, "(PC Register)");

next("next>>");

//Read PC content. Store content in PC variable
PC = READ _REG(4);

//Display READ results on LCD
tft.fillScreen(bcolor);

display(1le, 10, 4, 0, "Prog.Counter");
display(1l0, 60, 3, @, "PCle=");
display(1lee, 60, 3, @, String(PC));
display(1le, 90, 3, @, "PCle6=");

hexval = String(PC, HEX);

display(100, 90, 3, @, hexval);

//Wait before next step
next("next>>");

the

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

} //End of READ_PC

/***

Store PC contents to register MAR
for accessing memory address
MAR=PC (MAR block address=5)
**/
void PC2MAR() {
//Display message on LCD
tft.fillScreen(bcolor);
display(20, 10, 4, @, "MAR <-- PC");
display(@, 60, 3, @, "MAR=Memory Access Register");
display(@, 125, 3, @, "PC=Prog. Counter");
next("next>>");

//LOAD PC content in MAR register
WRITE_REG(5, PC);

//Update variable
MAR = PC;

//Display message on LCD
tft.fillScreen(bcolor);
display(1e, 10, 4, @, "Check MAR");
display(@, 60, 3, @, "MAR=Memory Access Register");
next("next>>");
} //End of PC2MAR

/***

FETCH 1st byte from memory, mem[MAR]
Instruction code
sk sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok
void FETCH1() {
//Display message on LCD
tft.fillScreen(bcolor);
display(1le, 10, 4, @, "FETCH");
display(140, 10, 3, 0, "byte 1>");
display(10, 50, 3, @, "Reading Instruction code");

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

display(1le, 110, 3, 0, "from mem[");
display(175, 110, 3, @, String(MAR));
display(220, 110, 3, 0, "1");
next("next>>");

//LOAD MAR content in MEM/OUT Unit
//for accessing the corresponding address
WRITE_REG(11, MAR);

//Receive memory content
//Store content in MBR variable
blockADDR = 11;
Wire.requestFrom(blockADDR, 1);
if (Wire.available())

MBR = Wire.read();

//Store instruction code in command variable
command = MBR;

//Display information (MAR, MBR) on LCD
tft.fillScreen(bcolor);

display(1le, 10, 3, 0, "MBR<--mem[");
display(190, 10, 3, @, String(MAR));
display(230, 10, 3, 0, "]1");
display(1e, 40, 3, o, "(10)=");
display(1lee, 40, 3, @, String(MBR));
display(1le, 70, 3, 0, "(16)=");
hexval = String(MBR, HEX);
display(1lee, 70, 3, 0, hexval);
next("next>>");

//Update MBR register from MBR variable
WRITE_REG(6, MBR);

//Display message on LCD
tft.fillScreen(bcolor);

display(1e, 10, 4, @, "Check MBR");
next("next>>");
tft.fillScreen(bcolor);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

display(1le, 10, 4, @, "command is");
display(120, 50, 4, 0, String(command));
next("next>>");

} //End of FETCH1

/***

Updating MAR for accessing
MAR=PC+1 (MAR address=5)
**/
void UPDATE_MAR() {
//Display message on LCD
tft.fillScreen(bcolor);
display(1e, 10, 4, @, "Updating");
display(10, 60, 4, @0, "MAR...");

//Update MAR register for fetching the next byte from memory
//(from next address)

WRITE_REG(5, PC + 1);

next("next>>");

//Update variable
MAR = PC + 1;

//Display message on LCD
tft.fillScreen(bcolor);

display(1e, 10, 4, @, "Check MAR");
next("next>>");

/***

FETCH 2nd byte from memory, mem[MAR]
Parameter code
sk sk ok ok ok sk ok ok ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok
void FETCH2() {
//Display message on LCD
tft.fillScreen(bcolor);
display(10, 10, 4, ©, "FETCH");

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

display(140, 10, 3, 0, "byte 2>");

//LOAD MAR content in MEM/OUT Unit

//for accessing the corresponding address
WRITE_REG(11, MAR);

next("next>>");

//Receive memory content
//Store content in MBR variable
blockADDR = 11;
Wire.requestFrom(blockADDR, 1);
if (Wire.available())

MBR = Wire.read();

//Store parameter code in param variable
param = MBR;

//Display information (MAR, MBR) on LCD
tft.fillScreen(bcolor);

display(1le, 10, 3, @, "MBR<--mem[");
display(190, 10, 3, @, String(MAR));
display(230, 10, 3, 0, "]1");
display(1e, 40, 3, 0, "(10)=");
display(1lee, 40, 3, 0, String(MBR));
display(1le, 70, 3, o, "(16)=");
hexval = String(MBR, HEX);
display(1lee, 70, 3, @, hexval);
next("next>>");

//update register MBR
WRITE_REG(6, MBR);

//Display messages on LCD
tft.fillScreen(bcolor);

display(1le, 10, 3, @, "Check MBR");
next("next>>");
tft.fillScreen(bcolor);

display(10, 10, 3, O, "param is");

[HOMS v.1B

display(180, 10, 3, @, String(param));
next("next>>");
} //END of FETCH2

/***

Decoding instruction and execution
Instruction block: [command][param]

command=instruction code

param=parameter code
**/
//command,param

void DECODE_EXEC() {

/****************************

MOV A,i (A=i)

sk o s ok ok ok sk sksk sk s ok ok ok sk skskskokok ko ok ok ok /

if (command == 4) {

//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "CMD:MOV A,");
display(190, 10, 3, 0, String(param));
display(1e, 40, 3, 0, "Executing...");
next("next>>");

//LOAD param (num) in Register A
WRITE_REG(1, param);

/****************************

MOV B,i (B=i)
*****************************/
if (command == 3) {
//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "CMD:MOV B,");
display(1ee, 10, 3, @, String(param));

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

display(1e, 40, 3, @, "Executing...");
next("next>>");

//LOAD param (num) in Register A
WRITE_REG(2, param);

/****************************

INC A (A=A+1)
*****************************/
if (command == 10) {
//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "CMD:INC A");
display(1le, 40, 3, 0, "Executing...");
next("next>>");

//Send INC command to register A
blockADDR = 1;
Wire.beginTransmission(blockADDR);
Wire.write(INC);
Wire.endTransmission();

//Display messages on LCD
tft.fillScreen(bcolor);
display(1e, 10, 3, @, "Check REG-A");

/****************************

INC B (B=B+1)
*****************************/
if (command == 5) {
//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "CMD:INC B");
display(1le, 40, 3, @, "Executing...");
next("next>>");

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

//Send INC command to register B
blockADDR = 2;
Wire.beginTransmission(blockADDR);
Wire.write(INC);
Wire.endTransmission();

//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "Check REG-B");

KKKk sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok sk ok sk ok ok ok ok ok ok
DEC A (A=A-1)
*****************************/
if (command == 6) {
//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "CMD:DEC A");
display(1e, 40, 3, 0, "Executing...");
next("next>>");

//Send DEC command to register A
blockADDR = 1;
Wire.beginTransmission(blockADDR);
Wire.write(DEC);
Wire.endTransmission();

//Display messages on LCD
tft.fillScreen(bcolor);
display(10, 10, 3, @, "Check REG-A");

/****************************
DEC B (B=B-1)
*****************************/
if (command == 7) {
//Display messages on LCD
tft.fillScreen(bcolor);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

display(1le, 10, 3, @, "CMD:DEC B");
display(1le, 40, 3, 0, "Executing...");
next("next>>");

//Send DEC command to register B
blockADDR = 2;
Wire.beginTransmission(blockADDR);
Wire.write(DEC);
Wire.endTransmission();

//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "Check REG-B");

[ok sk ok ok sk sk ok ok sk sk ok ok ok sk ok ok ok ok sk ok ok ok ok

INC B (B=B+1)
*****************************/
if (command == 5) {
//Display messages on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "CMD:INC B");
display(1e, 40, 3, 0, "Executing...");
next("next>>");

//Send INC command to register B
blockADDR = 2;
Wire.beginTransmission(blockADDR);
Wire.write(INC);
Wire.endTransmission();

//Display messages on LCD

tft.fillScreen(bcolor);

display(10, 10, 3, @, "Check REG-B");
}

/****************************

MOV B,A (B=A)

*****************************/

if (command == 99) //DISABLED INSTRUCTION

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

//Display messages on LCD
tft.fillScreen(bcolor);

display(1le, 10, 3, @, "CMD:MOV B,A");
display(1le, 10, 3, @, "Executing...");
next("next>>");

//Read from register A

//Store content to variable RA
RA = READ _REG(1);
Serial.print("Read=RA:");
Serial.println(RA);

//Store register A content (RA) in register B
WRITE_REG(2, RA);

//Display message on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "Check REG-B");

/****************************

ADD A,B
sk sk ok f
if (command == 1) {
//Display message on LCD
tft.fillScreen(bcolor);
display(1le, 10, 3, @, "CMD:ADD A,B");
next("next>>");

//READ from register A, Store in variable RA
RA = READ_REG(1);

//READ from register B, Store in variable RB
RB = READ_REG(2);

//Store register A content in register T1
WRITE_REG(7, RA);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

//Store register B content in register T2
WRITE_REG(8, RB);

//Display messages on LCD
tft.fillScreen(bcolor);

display(1le, 10, 3, @, "Check T1,T2");
display(1le, 40, 3, 0, "ALUEXEC...");
next("next>>");

//Send ADD instruction to ALU/SR Unit
byte RES = SEND_ALU(9, ADD);

//Store ALU result in register A
WRITE_REG(1, RES);

//Display message on LCD
tft.fillScreen(bcolor);

display(1le, 10, 3, @, "Check RA,ALU,SR");
next("next>>");

} //End of DECODE_EXEC

[ok sk ok ok sk sk ok ok sk sk ok ok ok sk sk ok ok ok sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk ok ok ok ok ok

Update PC register content
for fetching next instruction bytes
from memory

sk ok ok sk ok o sk sk ok ok ok sk sk ok ok sk sk ok ok ok sk sk sk ok ok skok s ok ok skok ok ok sk skok ok ok ok

void UPDATE_PC() {

//Send two INC commands to PC register
Wire.beginTransmission(4);
Wire.write(INC);
Wire.endTransmission();

delay(50);

Wire.beginTransmission(4);
Wire.write(INC);
Wire.endTransmission();

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

delay(50);

//Update variable
PC = PC + 2;

void loop() {
//Nothing here

[sk sk sk ok ok sk sk ok ok sk sk ok ok ok sk sk sk ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk ok ok ok ok ok

Initialize PULL-UP resistors
Every button is activated when
a PULL-UP pin goes to LOW (GND)
sk sk ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok
void init_buttons() {
pinMode (GREEN button, INPUT_PULLUP);
pinMode(RED_button, INPUT_PULLUP);

/***

Clear all registers (set content=0)

Register address = 1 = Register A
Register address = 2 = Register B
Register address = 4 = Register PC
Register address = 5 = Register MAR
Register address = 6 = Register MBR

**/

void clear REGS() {
Serial.println("Clearing registers...");
int validADDR[] = { 1, 2, 4, 5, 6, 7 };
for (int 1 =0; 1 < 6; i++) {
Wire.beginTransmission(validADDR[i]);
Wire.write(RESET);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

Wire.endTransmission();
delay(150);

}
Serial.println("OK done!");

}

/***

Display messages on TFT
and call clear register function
**/
void INIT() {

tft.fillScreen(bcolor);

display(1e, 10, 3, O, "RESET REGISTERS");

clear_REGS();

display(1le, 50, 3, @, "Done!");

display(1e, 80, 3, @, "Program loaded?");
display(10, 110, 3, @, "Start EXECUTION?");
next("next>>");

/***

Read register content
Send READ command
Register address = addr
Return content
**/
byte READ_REG(int addr) {

byte ans;

Wire.beginTransmission(addr);
Wire.write(READ);
Wire.endTransmission();
delay(200);
//Receive answer
Wire.requestFrom(addr, 1);
if (Wire.available())

ans = Wire.read();

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

return ans;

/***

Send command to ALU/SR unit

Address = addr

command to ALU/SR = instruction

Return ALU result

**/

byte SEND ALU(int addr, int instruction) {
byte ans;

Wire.beginTransmission(addr);
Wire.write(instruction);
Wire.endTransmission();
delay(300);

//Receive answer (PC content)

Wire.requestFrom(addr, 1);
if (Wire.available())
ans = Wire.read();

return ans;

/***

Load a number to a specific register
Register address = addr
Number = data

**/

void WRITE_REG(byte addr, byte data) {

Wire.beginTransmission(addr);
Wire.write(LOAD);
Wire.endTransmission();
delay(200);
Wire.beginTransmission(addr);
Wire.write(data);

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

Wire.endTransmission();

}

/***

Wait for a button press (LEFT button)

**/

void next(String txt) {

display(10, 180, 3, 0, txt);
while (digitalRead(GREEN_button) == HIGH) { ; }

/***

Display first message and wait for user input
**/
void run() {
Serial.print("inside run");
tft.fillScreen(bcolor);
display(10, 20, 4, @, "CONTROL UNIT");
display(1le, 70, 3, @, "Initialize?");
display(1le, 100, 3, 0, "(Clear Registers)");

next("next>>");

/***

Display text on TFT
on LCD screen

col: column

row: row

txsize: text size

txcolor: not used here (optional for debugging purposes)
val: text to be displayed

**/

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

void display(int col, int row, int txsize, int txcolor, String val) {

tft.setCursor(col, row);
tft.setTextSize(txsize);
tft.setTextColor(fcolor);
tft.print(val);

4.5 RGB LED-Strip control

At the edges of the suitcase, an RGB LED-Strip has been installed for offering
supplementary lighting (fig. 4.9). The LED-Strip is controlled by an Arduino which is also
installed in the suitcase as well as an additional DC power supply of 5V/3A.

Fig. 4.9 RGB LED-Strip frame

© Panayotis (Panos) PapazogloulglelYISRVAN:]

SOURCE-CODE:

[3 sk ok sk ok ok sk ok sk ok ok sk ok sk sk ok sk ok sk sk ok stk stk sk sk ok sk sk ok sk ok o

RGB LED-STRIP FRAME CONTROL

>k >k >k >k >k >k >k >k >k >k >k >k >k 3k ok ok ok ok %k %k
HOMS version 1B

Hardware-Oriented Microprocessor

Simulator

(C) Panayotis (Panos) Papazoglou
https://homs.panospapazoglou.gr/

LICENSE:

Creative Commons

CC BY NC SA

International License
>|<>|<>|<>|<>|<>|<>|<>|<>|<>|<>|<*********************************/
#include <FastLED.h>

#include <Adafruit_NeoPixel.h>

//Set control Pin
#define LED_PIN 8

//Set number of LEDs
#define NUM_LEDS 57

CRGB leds[NUM_LEDS];

void setup() {
//Initialize LEDs
FastLED.addLeds<WS2812, LED_PIN, GRB>(leds, NUM_LEDS);

//Set RED color only with low intensity
int r =000, g =0, b = 50;

//Set the above color intensities to all LEDs
for (int i = @; i <= 56; i++) {
leds[i] = CRGB(r, g, b);

//Light-up LEDs
FastLED.show();
}
}

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

void loop() {

4.6 GUI PC application

As mentioned before, a GUI environment has been implemented for inserting and
uploading programs to memory unit. This application is developed in Visual Basic within
the free Microsoft Visual Studio Community environment. The developed GUI consists of
two main parts: (a) application form, where interactive visual objects are embedded and
(b) visual basic code for implementing the object functionality. Figure 4.10 shows the
developed GUI environment.

82 HOMS v1B - Program Uploader - homs.panospapazoglou.gr - O X

Program

Address OpCode Full Instruction Clear Prog

COM

Selection

Upload

Close

Select Instruction Select Address

NOP (No Operation), BYTES:00 00 (code 00)

MOV A, i => (A = Integer i), BYTES:04 XX (code 04)
MOV B, i => (B = Integer i), BYTES:03 XX (code 03)
INC A (A=A+ 1), BYTES:10 00 (code 10)

INC B (B = B + 1), BYTES:05 00 (code 05)

DEC A => (A =A- 1), BYTES:06 00 (code 06)
DECB => (B =B - 1), BYTES:07 00 (code 07)

ADD A, B=> (A=A +B), BYTES:01 XX (code 01) _
HALT => Halt Program, BYTES:17 00 (code 17) Insert in Memory

Color White Demo Prog ‘ URL ‘

Fig. 4.10 The GUI environment (developed in Visual Basic)

o ~NO

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

SOURCE-CODE:

T3k 3k 3k 3K 3K 3k 3k 3K 3k Sk 3k 3k 3k 3k 3k >k sk 3k 3k 3k 3k Sk 3k 3K 3k Sk 3k 3 3k 3k K 3k ok 3k 3k 3k sk sk >k ok sk sk k

'GUI for developing And uploading
'program to physical memory unit
'a Visual Basic application

T3k 3k 3k Skook 3k sk ok 3k 3k Sk ok sk sk sk sk sk sk 3k sk ok 3k sk ok 3k sk Sk 3k 3k sk ok >k sk ok >k skosk ok sk skok kk ok
'"HOMS version 1B
'Hardware-Oriented Microprocessor
'Simulator

'(C) Panayotis (Panos) Papazoglou
"https://homs.panospapazoglou.gr/
'LICENSE:

'Creative Commons

'CC BY NC SA

'International License
'**/

Imports System.Windows.Forms.VisualStyles.VisualStyleElement.ProgressBar
Imports System

Imports System.IO.Ports

"Imports System.Reflection.Emit

"Imports System.Resources

'Imports System.Diagnostics.Eventing.Reader

"Imports System.Threading

'Imports System.Drawing

Public Class Forml

T3k 3k 3k K 3k 3k 3k K 3k 3k 3k ok 3k ok ok ok %k %k k

"RE* GLOBAL VARS ***

T3k 3k 3k skook >k sk ok >k skosk sk sk sk sk koskk k

Dim comPORT As String

Dim count As Integer = 0

Dim url As String = "https://homs.panospapazoglou.gr"
Private fn(20) As String

Private iset(20) As String

Private code(20) As Integer

Private mem(100) As Integer

Private opcode = 0, addr = 0, procounter = 9, a =0, b =0, TX = 0, RX

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

T3k ok 3k ok 5k 5k >k >k ok 5k >k >k ok ok >k >k ok ok >k ok ok ok >k k ok k k ok

"¥** AFTER APP FORM LOAD ***

T3k 3k 3k 3K 3k 3k 3k K 3K 3k Sk >k 3k ok 3k >k 3k ok 3k K 3k ok sk Rk kR ok

Private Sub Forml_Load(sender As Object, e As EventArgs) Handles
MyBase.Load

iset(@) = "NOP (No Operation), BYTES:00 00 (code 00)"
iset(1) = "MOV A, i => (A = Integer i), BYTES:04 XX (code 04)"
iset(2) = "MOV B, i => (B = Integer i), BYTES:03 XX (code 03)"
iset(3) = "INC A (A=A + 1), BYTES:10 00 (code 10)"

iset(4) = "INC B (B = B + 1), BYTES:05 00 (code 05)"

iset(5) = "DEC A => (A = A - 1), BYTES:06 00 (code 06)"
iset(6) = "DEC B => (B = B - 1), BYTES:07 00 (code 07)"
iset(7) = "ADD A, B => (A = A + B), BYTES:01 XX (code @1)"
iset(8) = "HALT => Halt Program, BYTES:17 00 (code 17)"
code(9) = 0 "NOP

code(1l) = 4 '"MOV A,i

code(2) = 3 'MOV B, i

code(3) = 10 "INC A

code(4) =5 "INC B

code(5) = 6 'DEC A

code(6) = 7 'DEC B

code(7) =1 "ADD A,B

code(8) = 17 "HALT

fn(0) = "NOP (No Operation), BYTES:00 00 (code 00)"

fn(4) = "MOV A, i => (A = Integer i), BYTES:04 XX (code 04)"
fn(3) = "MOV B, i => (B = Integer i), BYTES:03 XX (code ©3)"
fn(10) = "INC A (A = A + 1), BYTES:10 00 (code 10)"

fn(5) = "INC B (B = B + 1), BYTES:05 00 (code 05)"

fn(6) = "DEC A => (A = A - 1), BYTES:06 00 (code 06)"

fn(7) = "DEC B => (B = B - 1), BYTES:07 00 00 (code 07)"
fn(l) = "ADD A, B => (A = A + B), BYTES:01 XX (code 01)"
fn(17) = "HALT => Halt Program, BYTES:17 00 (code 17)"
Setcolors(1)

display_instructions_listbox1()

For i = © To 100 Step 2
mem_address_list.Items.Add(i)
Next

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

Timerl.Enabled = False
COmPORT = ""
For Each sp As String In My.Computer.Ports.SerialPortNames
ComboBox1.Items.Add(sp)
Next
End Sub

T3k ok ok ok ok 3k >k ok 5k ok >k >k ok ok >k 5k 5k 3k >k >k ok ok >k ok ok >k k ok ok k ok

'Set colors for all form objects
T3k 3k 3k 3k 3k sk sk 3k Sk sk Sk Sk 3k Sk 3k Sk sk 3k ok ok 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok

Private Sub Setcolors(mode As Integer)
Dim bcolor As Color = Color.FromArgb(185, 209, 234)
Dim fcolor As Color = Color.FromArgb(@, 0, 0)
Dim wcolor As Color = Color.FromArgb(255, 255, 255)

'Set default colors
If (mode = 1) Then
bcolor = Color.FromArgb(185, 209, 234)
fcolor = Color.FromArgb(e, 0, 0)
'overwrites back color for boxes within the app form
wcolor = Color.FromArgb(255, 255, 255)
End If

'Set colors for high contrast theme (black on white)
If (mode = 2) Then
bcolor = Color.FromArgb(255, 255, 255)

fcolor = Color.FromArgb(e, 0, 0)
wcolor = bcolor
End If

'Set colors for high contrast theme (white on black)
If (mode = 3) Then

bcolor = Color.FromArgb(0, 0, 0)

fcolor = Color.FromArgb(255, 255, 255)

wcolor = bcolor
End If

'set the same back/fore colors for every form object
clear_mem_button.BackColor = bcolor
clear_mem_button.ForeColor = fcolor

bcolor
fcolor

uploadbutton.BackColor
uploadbutton.ForeColor

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

stopbutton.BackColor bcolor
stopbutton.ForeColor = fcolor

bcolor
fcolor

demo_button.BackColor
demo_button.ForeColor

goto_url.BackColor = bcolor
goto_url.ForeColor = fcolor

Insert_memory_button.BackColor = bcolor
Insert_memory_button.ForeColor = fcolor
Me.BackColor = bcolor

Instruction_box_list.BackColor = wcolor
Instruction_box_list.ForeColor = fcolor

mem_address_list.BackColor = wcolor
mem_address_list.ForeColor = fcolor

memory.BackColor = wcolor
memory.ForeColor = fcolor

GroupBox5.BackColor = bcolor
GroupBox5.ForeColor = fcolor
GroupBox3.BackColor = bcolor
GroupBox3.ForeColor = fcolor
ComboBox1.BackColor = bcolor
ComboBox1.ForeColor = fcolor
pbarl.BackColor = bcolor

pbarl.ForeColor = fcolor

'unlock datagridbox colors from default
memory.EnableHeadersVisualStyles = False

memory .BackgroundColor = wcolor
memory.ForeColor = fcolor

memory.DefaultCellStyle.BackColor = wcolor

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

memory .DefaultCellStyle.ForeColor = fcolor

memory.ColumnHeadersDefaultCellStyle.BackColor = wcolor
memory.ColumnHeadersDefaultCellStyle.ForeColor = fcolor

memory .DefaultCellStyle.ForeColor = fcolor

memory .RowHeadersDefaultCellStyle.BackColor = wcolor
memory .RowHeadersDefaultCellStyle.ForeColor = fcolor

End Sub

T3k ok 3k ok 5k 3k >k ok 5k 5k >k >k ok 3k >k 3k 3k 3k >k >k 5k 3k %k 5k 5k >k %k %k 3k k ok

'Select COM port from list
T3k 3k sk 3K 3k sk sk ok 3k ok sk 3k sk sk >k 3K 3k sk sk 3k ok Sk 3k 3k ok sk Rk sk ko
Private Sub ComboBoxl SelectedIndexChanged(sender As Object, e As
EventArgs) Handles ComboBox1.SelectedIndexChanged
If (ComboBoxl.SelectedItem <> "") Then
comPORT = ComboBox1l.SelectedItem

End If

End Sub

T3k ok sk >k sk ok sk ok sk ok 3k ok Sk ok Sk ok sk sk sk sk sk ok sk sk ok ok ok ok ok ok ok

'Clear Prog button operation
T3k sk sk 3K 3k sk sk 3k 3k sk sk 3k sk Sk sk 3k 3k sk sk 3k ok Sk 3k ok sk sk Rk sk ko
Private Sub Button3 Click(sender As Object, e As EventArgs) Handles
clear_mem_button.Click
clear_memory ()
End Sub

T3k ok sk ok 3k ok sk ok sk ok sk ok sk sk sk sk sk sk Sk sk sk sk sk sk sk sk ok sk ok sk ok sk ok sk ok sk ok skok kok ok

'Clear Prog array/set each location to zero
T3k 3k 3k 3kook 3k sk ok >k skosk sk sk Sk sk sk Sk 3k 3k Sk ok 3k sk ok 3k 3k Sk ok sk Skook >k skok ok skosk sk skokok k
Private Sub clear_memory()
memory.Rows.Clear()
For i = © To 100

mem(i) = ©
Next
display_memory()
End Sub

T3k 3k 3k 3K 3k 3k 3k ok 3k 3k 3k >k 3k 3k >k 3k 3k 3k %k 3k 3k 3k K 3k ok ok Kk ck k ok

'Display available instructions
T3k sk sk sk skoskoskosk skosk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok k

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

Private Sub display_instructions_listbox1()
Instruction_box_list.Items.Clear()
For i = 0 To 8
Instruction box_ list.Items.Add(iset(i))
Next
End Sub

T3k 5k 3k ok ok 5k >k >k ok 5k 3k >k ok 5k >k >k ok ok >k ok 5k 5k >k >k 5k 3k >k >k 5k 3k >k >k ok ok >k >k ok ok >k ok %k k

"*¥** Tnsert automatically a demo program ***
T3k 3k 3k Sk 3k sk ok 3k skosk 3k sk sk ok >k Sk 3k 3k Sk ok 3k sk 5k 3k 3k Sk 3k 3k Skook >k sk >k skosk sk skok ok sk ok

Private Sub demobutton_Click(sender As Object, e As EventArgs) Handles
demo_button.Click
clear_memory()

mem(Q) = 4
mem(1l) = 4
mem(2) = 10
mem(3) = @
mem(4) = 3
mem(5) = 7
mem(6) = 7
mem(7) = ©
mem(8) = 17
mem(9) = ©
display_memory()
End Sub

T3k ok 3k K 3k 3k 3k K 3k 5k 3k >k 3k ok 3k >k ok 5k 3k %k 5k 5k >k Kk %k k

"*¥** Open URL in browser ***
T3k sk sk sk sk sk sk sk skosk sk sk sk sk sk sk ok sk ok ok ok ok sk sk sk sk k
Private Sub Button9_Click_1(sender As Object, e As EventArgs) Handles
goto_url.Click
System.Diagnostics.Process.Start(url)
End Sub

T3k 3k 3k 3K 3k 3k 3k K 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k K 3k 3k 3k 3k 5k 3k K 3k 3k 3k ok K ok k ok

"*** Configure and open COM port ***
T3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok
Private Sub open_port()
If (comPORT <> "") Then
Timerl.Enabled = False
SerialPortl.Close()

SerialPortl.PortName = comPORT
SerialPortl.BaudRate = 9600
SerialPortl.DataBits = 8

SerialPortl.Parity = Parity.None

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

SerialPortl.StopBits = StopBits.One
SerialPortl.Handshake = Handshake.None
SerialPortl.Encoding = System.Text.Encoding.Default
SerialPortl.ReadTimeout = 10000
Try
SerialPortl.0pen()
Catch ex As System.UnauthorizedAccessException
MsgBox("Access denied")
Exit Sub
End Try
End If
End Sub

T3k ok sk ok 3k ok sk ok ok ok 3k ok sk ok Sk sk Sk sk sk sk sk sk sk sk 3k sk ok sk ok ok ok sk ok sk ok sk k ok

k%% UPLOAD CODE TO ARDUINO Hk
'*¥*¥* enable transmitting in Timer 1 ***
T3k 3k 3k 3k sk sk skosk skosk ok ok ok sk sk ok k
Private Sub Buttonl Click 1(sender As Object, e As EventArgs) Handles
uploadbutton.Click
open_port()
TX =1 : RX =0
Timerl.Enabled = True

End Sub

T3k 5k 3k ok 3k 5k 3k K 3k 3k 3k >k 3k 5k 3k >k >k 5k 3k %k 5k 5k 3k >k 3k 3k >k >k 5k 3k 3k >k %k ok kK k

"¥x*% putton for default GUI colors ***
T3k sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk skosk sk kosk sk sk sk

Private Sub Defbutton_Click(sender As Object, e As EventArgs) Handles
Defbutton.Click
Setcolors(1)
End Sub

T3k 3k 3k 3k 3k 3k 3k K 3K 3k 3k >k 3k 3k 3k >k 3k 3k 3k 3K 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k 3k 3k >k 3k 3k 3k %k ok %k k Rk ok

"¥** pytton for GUI HC colors (black on white) ***
T3k 3k 3k Skook 3k 3k ok >k skook sk sk sk sk >k Sk 3k sk Sk 3k sk ok 3k 3k Sk ok 3k Skook >k skok ok skosk sk skosk ok kskosk sk kokk ok

Private Sub Whitebutton Click(sender As Object, e As EventArgs) Handles
Whitebutton.Click
Setcolors(2)
End Sub

T3k 3k 3k 3K 3k 3k 3k K 3K 3k 3k >k 3k 3k 3k 3k 3k sk 3k 3K 3k Sk 3k 3K 3k 3k 3k 3K 3k 3k 3k >k 3k 3k >k 3k 3k 3k >k 3 3k 3k kK sk k Rk ok

"¥** putton for GUI HC colors (white on black) ***

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

T3k 3k 3k 3K 3k 3k 3k 3K 3K 3k Sk >k 3k 3k 3k 3k 3k ok 3k 3K 3k Sk 3k 3K 3k Sk 3k 3k 3k 3k 3k >k sk ok >k 3k sk 3k >k 3k 3k Sk kK sk k Rk k

Private Sub Blackbutton_Click(sender As Object, e As EventArgs) Handles
Blackbutton.Click
Setcolors(3)
End Sub

T3k 3k 3k 3K 3k 3k 3k 3K 3K 3k Sk >k 3k ok 3k 3K 3k Sk 3k 3K 3k Sk 3k 3 3k 3k 3K 3k 3k Sk 3k 3k sk 3k >k 3k sk Sk sk ok k sk Rk ok

"**%*% EVENT TIMER for Serial communicatinon ***
5k 3k 3k 3k 3k ok sk sk ok Sk sk ok sk ok Sk sk ok sk sk 5k sk ok Sk sk 5k sk 3k Sk sk 5k sk sk ok sk ok sk >k ok sk ok sk sk ok sk k

Private Sub Timerl Tick(sender As Object, e As EventArgs) Handles
Timerl.Tick
If (TX = 1) Then

SerialPortl.WritelLine("fakelineafterreset™)

Waitfake()

SerialPortl.WriteLine("new")

For i = 0 To 100
pbarl.Value = i
SerialPortl.WriteLine(mem(i).ToString())
If (mem(i) <> @) Then

End If
Next
SerialPortl.WritelLine("end")

X = ©
End If
End Sub

T3k ok 3k ok 3k >k 3k ok sk ok 3k ok 3k ok Sk sk sk ok Sk sk Sk sk Sk sk 3k sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok sk kk ok

PREK Wait after Arduino auto reset *EK
T3k 3k 3k sk 3k sk ok sk skosk sk sk sk ok sk ok 3k 3k Sk ok 3k sk ok 3k 3k Sk 3k 3k sk ok 3k sk ok 3k sk sk >k skosk sk sk kok k
Private Sub Waitfake()
For x = 1 To 10000000
mem(100) = Math.Floor(Math.Sqrt(x / 100000) * Rnd())
Next
End Sub

"3k ok ok >k ok ok >k ok ok ok ok ok ok ok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

'**¥* Close com port and stop ***
T3k 3k 3k Skook 3k 3k sk >k skook ok sk skosk >k Skook sk skook ok skosk ok ko skosk ok skok

Private Sub stopbutton Click(sender As Object, e As EventArgs) Handles
stopbutton.Click

™X = 0
SerialPortl.Close()

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

End Sub

T3k 5k ok ok ok 3k >k ok ok ok >k >k ok ok >k 5k 5k 3k >k ok ok >k >k ok 5k >k %k k ok >k ok

"¥** DISPLAY MEMORY CONTENTS ***

T3k 5k 3k ok ok 3k >k ok 5k 5k >k >k ok ok >k 5k 5k 3k >k ok ok 3k >k ok 5k >k k %k ok >k ok

Private Sub display_memory()

'Clear RAM display area
memory.Rows.Clear()

For 1 = © To 100
If (i Mod 2 = @) Then
memory.Rows .Add(i, mem(i), fn(mem(i)))
Else
memory.Rows.Add(i, mem(i), mem(i))
End If
Next
End Sub

T3k ok sk ok sk ok sk ok ok ok sk ok sk sk sk ok sk sk sk sk ok ok ok ok sk ok ok ok ok

"k** TNSERT CODE IN MEMORY ***
sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK oK oK oK oK KK K K oK oK

Private Sub InsertButton_Click(sender As Object, e As EventArgs) Handles
Insert_memory button.Click

Dim addrselect As Integer = mem_address list.SelectedIndex * 2
Dim insselect As Integer = Instruction_box_ list.SelectedIndex

If addrselect <> -1 Then
addr = addrselect
Else
addr = 0

End If

If insselect <> -1 Then
opcode = code(insselect)
Else
opcode
End If

I}
(o>

If addr < © Then
addr = 0
End If

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

Dim intnum As Integer
Select Case opcode
Case 4
intnum = read_int("MOV A,X //X=")
mem(addr + 1) = intnum
Case 33 'idle
intnum = read_int("MOV B,X //B=")
mem(addr + 1) = intnum
Case 38 'idle
intnum = read_int("INZ (A), Address=")
mem(addr + 1) = intnum
Case 39 'idle
intnum = read_int("INZ (B), Address=")
mem(addr + 1) = intnum
End Select
mem(addr) = opcode
display_memory()
End Sub

T3k sk sk ok 3k >k sk ok sk ok sk ok Sk ok Sk sk 3k ok 3k ok Sk sk Sk sk sk sk 3k sk ok sk Sk sk ok sk ok sk ok sk ok sk ok sk sk sk ok ko

"*¥** READ INT VALUE AS INSTRUCTION PARAMETER ***

T3k 3k 3k kK 5k 3k 3k >k 3k 5k 3k >k 5k 3k >k 3k 3k 3k >k 3k 5k 3k %k 3k 5k 3k 3k 3k 3k 3k >k 5k 3k >k >k ok 3k >k >k 5k ok >k ok k k k ok

Function read_int(msg As String) As Integer
Dim str = InputBox(msg)

If (str = "") Then
MsgBox("Value not selected, set to default=0")
str = "0"

End If

Return Convert.ToInt32(str)
End Function

End Class

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

CHAPTER 5
System Operation

5.1 HOMS as a system

The previous mentioned components (blocks) have to be reused in order to form a
working microprocessor model. The working model consists of General and Special
Purpose Registers (GPR-SPR, Register blocks) and special blocks such as, Arithmetic
and Logic Unit (ALU), Control Unit (CU) and memory/output system unit (MEM-I/O). The
real implemented model includes five (5) blocks as registers, one (1) block for Control
Unit, one (1) block for ALU and Status Register and one (1) block for the memory/output
system. Figure 5.1 shows how the hardware components constitute a working system
(microprocessor, memory with user data input and output).

RESET RESET

BEEE »-|| BEEH o

@ Register-A @ Register-B

SINLHOIG

@ ssanlHowa

S s

Special
Purpose
Registers

Microprocessor

‘ 2
z

2 =]

g >
@ E
= 3 =]

g g

= = a
ol

2

Buttonl E&unonz0

Special

Special .
@ Unit

@ Unit s on stton2 @
Arithmetic &
Logic Unit,
Status Register

Fig. 5.1 Block organization for a working system

As shown in fig. 5.2, the data transfer between units (e.g. registers, memory) is performed
via communication buses. This communication is implemented in the real model by using
the 12C serial protocol. This practical approach is chosen in order to simplify the physical

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

connections between blocks. There are two pairs of common connections between all
blocks (SDA-Serial Data, SCL-Serial Clock). Figure 5.2 shows the I°C connections as
well as the power channels (5V and GND).

@® @ ® @
@

RESET

@ Register-A @

1
I T
C @ 7 @) @ @
RESET @ RESET @ RESET ®
2 2 2
—1= [} = = © — 9]
000100 & 001000000, & 010=0{0=0) E
HEHE o HEHE o >
& & 7]
@ Register-PC P @ Register-MAR @) @ Register-MBR @
Control Unit ALU/SR I
) ® @
@g RESET @g RESET @g . sV
2 2 2 . GND
: ?s ?s
Special B Special ‘ Spegial ‘ . 12C bus
@ Sl Button1 But Zm @ il Button Buan@ @ Sy Buttonl But(onz@
— + Memory - I/O

Fig. 5.2 Common connections between blocks

5.2 Assembly program execution

5.2.1 Introduction

As mentioned before, the HOMS tool constitutes a “working microprocessor” that
interacts with the memory unit for executing assembly instructions. All the available
HOMS blocks have to communicate to each other via the 1°C bus. The HOMS is based
on an 8bit architecture. Thus, registers, memory contents and addresses are all 8bit. The
memory unit just holds the instruction data (the first byte for the command and the second
byte for the parameter). The control unit ensures that in each execution step, two bytes
will be transferred to “microprocessor” starting from the current address that the PC
register points to. The value of instruction bytes (command and parameter) makes sense
only for the control unit in order to perform the needed actions (instruction execution).
Inside the control unit, an execution loop takes place. Figure 5.3 shows the flow chart for
the execution loop. Based on this process, the memory locations are scanned and the
control unit executes the corresponding instructions. When a HALT instruction (code

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

value 17) is found, the execution process is terminated. Within the loop, the following
tasks are performed:

READ_PC. The starting address of the next instruction to be executed is retrieved
from PC register. Every assembly instruction that is stored in memory, has a
constant length of two bytes. Thus, the fetching from memory can be implemented
in a simple way.

PC2MAR. Inside a microprocessor, the MAR (Memory Access Register) is directly
connected to address bus, in order to activate a specific address for reading or
writing data. At this step, the content of PC register is copied to MAR.

FETCHL1. Based on the MAR content, the first instruction byte is fetched from the
memory. This byte is transferred to MBR (Memory Buffer Register) in order to be
available to the control unit.

UPDATE_MAR. The content of MAR register is updated (MAR=MAR+1) in order
to point to the next address. Thus, the next byte fetching is prepared correctly.
FETCH2. Based on the new MAR content, the second instruction byte is fetched
from the memory. This byte is also transferred to MBR (Memory Buffer Register)
in order to be available to the control unit.

DECODE_EXEC. Now the command block is completed. The first byte represents
the command code and the second byte the parameter. If an assembly instruction
has no parameter, this byte is zero but is transferred from the memory based on
the above steps.

UPDATE_PC. After instruction execution, the contents of PC register are updated
(adding the number 2) for fetching the next instruction from memory.

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

\ 4
INIT
Buttons, LEDs,
Memory,
Registers

A\ 4
| command=0 |

command
<>17 ?

READ _PC
PC2MAR
FETCH1

UPDATE_MAR
FETCH2

DECODE_EXEC

UPDATE_PC

|
Fig. 5.3 Execution loop

5.2.2 Executing areal program

For performing a program execution, the corresponding byte codes have to be stored
in the memory module. When the system starts, the user selects the Demo or the Upload
operation. When the Demo option is selected, then the instruction MOV A,3 is loaded in
the memory unit and can be immediately executed. On the other hand, the program can
be developed within the GUI environment which is a computer-based application. After
the program development, the corresponding byte codes are uploaded to memory unit
through a USB connection.

Figure 5.4 shows the computer-based application where the program can be
developed. The GUI is organized in sections based on the corresponding functionality

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

#! HOMS v1B - Program Uploader - homs.panospapazoglou.gr

GUI environment

| Program (Windows based
‘ application
Stored Program Address OpCode Full Instruction PP)
in software ’ o MOV A, i => (A = Integer i), BYTES:04 XX (code 04) |
memory before ! 4 4 T
u Ioa:zin to 2 10 INC A (A = A+ 1), BYTES:10 00 (code 10) el Communication
P 9 3 0 0 control for
the physn::al 4 3 MOV B, i => (B = Integer i), BYTES:03 XX (code 03) uploading
Memory unit 5 7 7 programs to the
6 7 DEC B => (B = B - 1), BYTES:07 00 00 (code 07)
‘ Memory block
7 0 0 .
i 8 17 HALT =>Halt Program, BYTES 17 00 (code 17) (Arduino)
1 9 0 0
10 0 NOP (No Operation), BYTES:00 00 (code 00)
i . n 0 0
Instruction list:
. Select Instruction Select Address Address
Available .
N OP (No Operation), BYTES-00 00 (code 00) 0 selection for
Instructions MOV A, i => (A = Integer i), BYTES:04 XX (code 04) 2 : .
MOV B, i => (B = Integer), BYTES:03 XX (code 03) 4 instruction
INC A (A = A+ 1), BYTES:10 00 (code 10) 6 -
GUI color INC B (B = B + 1), BYTES:05 00 (code 05) 8 storage in
- DEC A => (A = A- 1), BYTES:06 00 (code 06) 10 memory
selection: DECB => (B = B - 1), BYTES:07 00 (code 07)
- ADD A, B => (A=A +B), BYTES:01 XX (code 01) ;
Normal or High- |, 7 2. 1ot Program BYTES 1700 (code 17) Insert in Memory
Contrast

Color White Demo Prog URL

Fig. 5.4 GUI environment for program development

5.2.3 Testing the demo instruction

The first thing to do after HOMS activation, is to select the demo execution or the
upload from the PC. Fig. 5.5 shows the available options for preparing program execution.
The first step for program execution is to load program instruction codes in memory unit.

|
MEMORY UMIT \
DEMD or UPLOAD? ‘

LEFT RIGHT
¢o) DEMO == €g3 UPLOAD?

Fig. 5.5 Starting from memory unit

According to fig. 5.6 the user has selected the Demo option, where the instruction
MOV A,3 will be loaded in memory.

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

DE MO

Instruction:

MO Aed

Use CU to start

Fig. 5.6 The instruction MOV A,3 will be loaded in memory

After instruction load, the control unit will be used for starting the execution process
(fig. 5.7). The first step is to Reset all the HOMS registers. The initial value for all registers
is FF (hexadecimal value) and after Reset, the new content will be zero (fig. 5.8).

RESET REGISTERS
Done!

Program loaded?
Start EXECUTIONT

next>>

= -
TTOAWER |
e |
el
|© wezase || &

/ (‘ Prog. Counter: ¢

Fig. 5.8 Register Rest

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

5.2.4 Testing a program from PC

For a full demonstration of the HOMS v. 1B tool operation, an assembly program will
be developed within the GUI environment and uploaded to the memory module. Table
5.1 shows the demo program (symbolic instruction, byte code and memory contents).

Table 5.1
Demo program

Instruction Byte code Addres(,js (c;ontent) (in
ecimal)

MOV A, 6 (dec) 04 04, (hex) 04 04 00" (04), 01 (04)

INC A (dec) 10 00, (hex) 0A 00 02" (10), 03 (00)

MOV B, 7 (dec) 03 07, (hex) 03 07 04" (03), 05 (07)

DEC B (dec) 07 00, (hex) 07 00 06" (07), 07 (00)

HALT (dec) 17 00, (hex) 11 00 08" (17), 09 (00)

* Instruction starting address (PC content)

STEP 1 - GUI Application execution

After the PC application execution, the GUI environment will be activated (fig. 5.9).

25 HOMS v1B - Program Uploader - homs.panospapazoglou.gr o X
Program
Address OpCode Full Instruction Clear Prog
COM
Selection
Upload
Close
Select Instruction Select Address
NOP (No Operation), BYTES:00 00 (code 00) 0
MOV A, i=> (A = Integer i), BYTES:04 XX (code 04) 2
MOV B, i=> (B = Integer i), BYTES:03 XX (code 03) 4
INCA (A=A+1), BYTES:10 00 (code 10) 6
INC B (B = B + 1), BYTES:05 00 (code 05) 8
DEC A => (A = A- 1), BYTES:06 00 (code 06) 10
DECB => (B = B - 1), BYTES:07 00 (code 07)
ADD A, B => (A=A +B), BYTES:01 XX (code 01) ,
HALT => Halt Program, BYTES:17 00 (code 17) Insertin Memory
Color White Demo Prog [URL

Fig. 5.9 The GUI environment

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

STEP 2 - Inserting the program

The program can be entered step by step, but we will use the Demo Prog option for
automatic program insertion. When the button Demo Prog is pressed, the program table
area is populated with the preinstalled demo program (fig. 5.10).

#/ HOMS v1B - Program Uploader - homs.panospapazoglou.gr = o X
Program
Address OpCode Full Instruction Clear Prog
» I MOV A, i => (A = Integer i), BYTES:04 XX (code 04)
1 4 4 Com
2 10 INCA (A=A + 1), BYTES:10 00 (code 10) Selection
3 0 0
4 3 MOV B, i => (B = Integer i), BYTES:03 XX (code 03)
5 7 7
6 7 DEC B => (B = B - 1), BYTES:07 00 00 (code 07)
7 0 0 L5
8 17 HALT =>Halt Program, BYTES:17 00 (code 17)
9 0 0 Close
10 0 NOP (No Operation), BYTES:00 00 (code 00)
n 0 0
Select Instruction Select Address

NOP (No Operation), BYTES:00 00 (code 00)

MOV A, i => (A = Integer i), BYTES:04 XX (code 04)
MOV B, i => (B = Integer i), BYTES:03 XX (code 03)
INCA (A=A+1), BYTES:10 00 (code 10)

INC B (B =B + 1), BYTES:05 00 (code 05)
DECA=>(A=A-1), BYTES:06 00 (code 06)

DEC B => (B = B - 1), BYTES:07 00 (code 07)
ADD A, B =>(A=A+B), BYTES:01 XX (code 01) :
HALT => Halt Program, BYTES:17 00 (code 17) Insert in Memory

Color White ‘ Demo Prog URL

Fig. 5.10 The program is inserted

—mosENO

o

STEP 3 - Activating HOMS Tool and Upload option

The USB cable is plugged from PC into the memory unit (fig. 5.11) and the option
UPLOAD is chosen (fig. 5.12a, 5.12b).

RIGH

) DEM0 — (o) UPLOAD?

Fig. 5.11 USB connection

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

MEMORY LUHIT
DEMO o UPLOAD?

LEFT

¢oy DEMO == <o) UPLOAD?

fig. 5.12a Main menu in memory unit

STEP 4 - Uploading from PC

(-

Maitinm for

il oad «x

. 2.4inch LCD Modauig

fig. 5.12b Memory unit is waiting to receive from PC

Firstly, we select the COM port where the memory unit (Arduino) is connected (1). The
next step is to press the Upload button (2). The upload process is confirmed through the
green bar (3). Figure 5.13 shows the above steps.

%' HOMS v1B - Program Uploader - homs.panospapazoglou.gr o X
! Program
Address OpCode Full Instruction Clear Prog
, O MOV A, i => (A = Integer i), BYTES:04 XX (code 04) ‘
CcOoM
1 4 4
2 10 INCA (A=A + 1), BYTES:10 00 (code 10) Selection
3 0 0 com9
<4 3 MOV B, i => (B = Integer i), BYTES:03 XX (code 03)
5 , : 3
6 V3 DEC B => (B =B- 1), BYTES:07 00 00 (code 07) T
7 0 0 Upload
8 17 HALT =>Halt Program, BYTES:17 00 (code 17)
9 0 0 Close
10 0 NOP (No Operation), BYTES:00 00 (code 00)
n 0 0
Select Instruction Select Address
NOP (No Operation), BYTES:00 00 (code 00) 0
MOV A, i => (A = Integer i), BYTES:04 XX (code 04) 2
MOV B, i => (B = Integer i), BYTES:03 XX (code 03) 4
INCA(A=A+1), BYTES:10 00 (code 10) 6
INC B (B = B + 1), BYTES:05 00 (code 05) 8
DEC A =>(A=A- 1), BYTES:06 00 (code 06) 10
DECB=>(B=B- 1), BYTES:07 00 (code 07)
ADD A, B => (A=A + B), BYTES:01 XX (code 01) ;
HALT => Halt Program, BYTES:17 00 (code 17) Insertin Memory
Color White Demo Prog URL

Fig. 5.13 Upload procgsi

If the program upload is successful, then the corresponding bytes will be appeared on the
TFT display of the memory unit (fig. 5.14).

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

o
(o]
o
o
o

o]

(o]

(o)

4inch LCD Module

Fig. 5.14 Upload successful

STEP 5 — Program Execution through the Control Unit

Now, the uploaded program can be executed step by step using the on-display
instructions at the control unit.

The execution steps inside the HOMS tool are described in the following table.

Table 5.2 shows as an example, how the instruction MOV A 4 is executed.

Table 5.2
Execution steps for instruction MOV A,4
Register
1 2 3 4 5 6 7
PC 00
L
MAR 00 01 8
MBR 04 04 8
[a)
A 04

As shown in table 5.2, the instruction MOV A,4 is executed as follows:

STEP 1: The PC shows the starting address of the instruction to be executed (MOV A,4)
STEP 2: The starting address of the instruction is stored in MAR register

STEP 3: The first instruction byte is fetched and is stored in MBR register

STEP 4: The MAR address is increased by one, in order to point to the next address where the second
byte of the instruction is stored (parameter)

STEP 5: The second instruction byte is fetched and is stored in MBR register

STEP 6: The control unit decodes the instruction bytes and starts to execute the instruction
STEP 7: The content of register A is now 04

The above steps can be now confirmed inside the real HOMS tool environment.

Important note: please visit the web site of the HOMS project for viewing the
corresponding videos.

© Panayotis (Panos) Papazogloullgle]YISRAMN:]

CHAPTER 6
Basic Electronic and other
components

All the necessary components for building the HOMS v. 1B tool are very common and
can be found in any local or international market. On the other hand, the block
dimensions, the TFT screens, the buttons, etc, can be very different as compared to the
presented HOMS tool implementation based on designer's choices. Current
implementation shows how the concept of the object-oriented approach can be applied.
Table 6.1 shows some basic components that have been used in HOMS tool version 1B.

Table 6.1
Components

Component Physical form

Number of items

9

Microcontroller

platform Arduino UNO 5: register blocks

3: special blocks
(cc%r(rsll\él;izble 1: RGB LED-Strip control
board)

4-Digit LED Display (@)

5
4-digit Display
5: register blocks
3
TFT Display

3: special blocks

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

1
Power Supply
1: RGB LED-Strip

1
Power Supply |
1: HOMS too

5V/I3A

11

Pot knobs 5: register blocks

6: special blocks
Plastic
S 11

: 5: 1KQ linear
- (register blocks)
: 6: 10KQ linear
(special blocks)

14

Button () ’ 5: register blocks

9: special blocks

Potentiometer

Important note: for building instructions, please read the complete technical
reference of HOMS version 1 (sections 4.3 and 4.4).

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

About the author [Dr. Panayotis (Panos) Papazoglou]

Kapodistrian University of Athens.

He worked also as Lecturer, Assistant Professor and Associate Professor at
Technological Educational Institutes of Athens, Lamia and Central Greece,
Departments of Electronics, Computer Engineering (Head of Department 2015-2016)
and Electrical Engineering respectively. He teaches Computer Architecture and
Microprocessor programming for more than 25 years with a total academic
experience more than 27 years. Dr P. Papazoglou is the author of 14 scientific-
technical books (12 in Greek and 2 in English -Amazon, USA-) and has more than 50 publications in
international journals, book chapters and conferences. He is the author of the Greek best seller book
“Application Development with Arduino” and the most popular book about microprocessors.

\J ‘ "% Associate professor, Department of Digital Arts and Cinema, National and
\

This project did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.

References

1. P.M.Papazoglou, A Hybrid Simulation Platform for Learning Microprocessors, Computer Applications in
Engineering Education, 10.1002/cae.21921, (pp 655-674) WILEY, 2018
2. HOMS Project version 1 (https://homs.panospapazoglou.gr/)

Website

https://homs.panospapazoglou.gr/

© Panayotis (Panos) PapazogloulRIe]YSRANR:]

