

HARDWARE-ORIENTED
MICROPROCESSOR SIMULATOR

(HOMS)
OPEN-SOURCE PROJECT

Dr. Panayotis (Panos) Papazoglou

23 Feb – 2024 V1.0 (2023-2024)

© Panayotis (Panos) Papazoglou Page 2

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the
license terms.

Under the following terms:

Attribution — You must give appropriate credit , provide a link
to the license, and indicate if changes were made . You may do
so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

NonCommercial — You may not use the material
for commercial purposes.

ShareAlike — If you remix, transform, or build upon the
material, you must distribute your contributions under the same
license as the original.

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

© Panayotis (Panos) Papazoglou Page 3

Contents

Chapter 1 - General information 7
1.1 Introduction 7

Chapter 2 - System description 9
2.1 Introduction 9
2.2 HOMS tool Overview 10
2.3 Hardware components 12
2.4 Embedded software 16

Chapter 3 - System operation 57
3.1 HOMS as a system 57
3.2 Assembly Program execution 59

Chapter 4 - Build reference 65
4.1 Design files summary 65
4.2 Bill of materials summary 66
4.3 Build instructions 67
4.4 Operation instructions 69

About the author 71
References 71

© Panayotis (Panos) Papazoglou Page 4

© Panayotis (Panos) Papazoglou Page 5

HARDWARE-ORIENTED MICROPROCESSOR SIMULATOR
(HOMS)

Main features:

• full-working hardware-oriented simulator

• microprocessor/microcomputer simulator

• educational tool

• based on Arduino platform

• easy reproduction

• for academic teachers and researchers in the field of engineering education

• open-source

Keywords
Microprocessor simulator, Arduino-based educational tool, Hardware-oriented simulator,
Open-source simulator

© Panayotis (Panos) Papazoglou Page 6

© Panayotis (Panos) Papazoglou Page 7

CHAPTER 1
General information

1.1 Introduction
The proposed HOMS system, constitutes a very different approach regarding the

microprocessor simulation and faces effectively the corresponding limitations of the other
relevant tools. Table 1.1 shows some differences between existing tools and the HOMS
system.

Table 1.1

Feature Software
simulation

FPGA technology HOMS system

Hardware point of
view

NO YES YES

Hands on NO YES YES

Complexity LOW HIGH LOW

Architectural
point of view
(component level)

YES NO YES

Plug and Play NO NO YES

Ease of use YES NO YES

Custom
architecture

NO YES YES

Custom assembly
instructions

NO YES YES

Platform type PC PC and board Board/Autonomous

Prior to HOMS system, a novel hybrid simulation platform has been proposed in the
literature from the same author (Papazoglou, P., 2018). This platform is based on original
designed PCBs with SMD technology. On the other hand, the above proposed
implementation (Papazoglou, P., 2018) has limitations such as board assembly
complexity, high cost, different board technologies and complex operation software. While
the question for replacing microprocessor software simulators with hybrid approaches
remains, a new educational tool for studying microprocessor architecture and
programming has to be proposed for facing effectively all the previous tools limitations
regarding construction, programming and operation complexity.
In this project, a fully working and mature educational tool for learning microprocessors
is proposed for the very first time in the literature for higher education in the field of
computer science and computer engineering. The proposed educational tool faces
effectively every limitation of the previous versions, is based on open-source hardware
and can be reproduced by everyone. Figure 1.1 shows the implementation of the
proposed HOMS tool which is an 8bit microprocessor/system model. This model consists

© Panayotis (Panos) Papazoglou Page 8

of similar blocks that represent microprocessor internal components. The HOMS tool has
also a memory/output unit for supporting memory data entry and data output. Is a full
working custom system, where the corresponding developer can build its own assembly
language and choose their desired microprocessor components.

Fig. 1.1 The proposed HOMS tool

© Panayotis (Panos) Papazoglou Page 9

CHAPTER 2
System description

2.1 Introduction
A microprocessor consists of various internal units for performing instruction execution.

The internal units interact with each other by exchanging data. On the other hand,
microprocessor fetches instructions from external memory and if needed, the
corresponding results are returned to memory again. For building an operational
microsystem (microcomputer), a microprocessor and a memory unit are needed as well
as an input and an output unit. Figure 2.1 shows a typical model that represents a simple
microprocessor.
Based on this model, the proposed hardware-oriented educational tool (HOMS) consists
of the necessary units that form a simple microprocessor, a memory and supports data
entry in memory as well as data output.

Fig. 2.1 Typical components of a single microprocessor

The main goal of a microprocessor is the instruction execution. Instructions are part of
the program which is stored in main memory. Instructions have to be transferred from
memory to microprocessor (fetching) via data bus. The instruction execution procedure
is simplified in steps, as follows (assume that the addition A+B will be performed):

Step 1: Read PC (Program counter) for finding where the next instruction address is

Step 2: Store this address to MAR (Memory Access Register) in order to place the desired
memory address on address bus

© Panayotis (Panos) Papazoglou Page 10

Step 3: Fetch instruction code via data bus and store this code in MBR (Memory Buffer
register)

Step 4: Fetch parameter code via data bus and store this code in MBR (Memory Buffer
register)

Step 5: Decode instruction data and execute, a) copy the contents of registers A and B
to ALU registers T1 and T2 respectively, b) perform the addition T1+T2 and update SR
(Status Register), c) store result to register A

Step 6: Update PC (Program Counter) for fetching next instruction code from memory

There is no hardware tool/kit in the market that shows the above procedure step by
step. The proposed hardware-oriented tool (HOMS) consists of real hardware
components that represent the microprocessor internal units, as shown in fig. 2.1.

2.2 HOMS tool Overview
The HOMS is a fully working prototype that offers unique features as compared to

similar tools. Table 2.1 summarizes the supported features.

Table 2.1
HOMS tool unique features

Customizable architecture The teacher or student can use any
number or type of blocks for building the
preferred microprocessor architecture.

Block reusability The microprocessor units are based on
the same board (e.g. Arduino UNO). For
example, the proposed HOMS tool
consists of eight identical blocks. Thus, the
embedded software determines the block
functionality (same block, different
functionality based on software).

Programmable functionality Based on the embedded software, a block
operates like a register or control unit or
ALU or special register, etc.

Experimental architecture Based on the number and type of blocks,
a teacher or student can test a prototype
architecture or to expand an operation to
smaller steps by using more blocks.

Assembly instructions development The existing blocks support functionality
that is controlled by the control unit. The
HOMS user is free to build any assembly
instruction which is supported by the
software inside control unit.

Student skills emerge Block building and assembly instructions
can be developed by students. Students

© Panayotis (Panos) Papazoglou Page 11

use their mind and hands and learn to
perform accurate manipulations and
movements to bring the hardware to life.

Educational scenarios Using the default HOMS tool architecture,
teachers can develop the desired
assembly instructions for building different
educational scenarios. Based on the
embedded software (inside blocks), the
behavior of the blocks can be adapted to
the desired educational scenarios.

Complete approach Using the proposed HOMS tool, the
microprocessor can be approached from
many different points of view/operation:

a) a programmer/user develops and
tests assembly code using
exclusively the available system
instructions

b) a software/hardware developer
adapts the embedded software for
supporting the desired
microprocessor
functionality/operation

c) a teacher or student selects the
desired blocks and builds an
entirely new architecture

d) a student is simply
watching/studying the instruction
execution procedure/sequence

Multiple points of view Based on the different points of view as
mentioned previously, every student can
extract information from the desired
microprocessor feature.

Hardware point of view The HOMS tool, emphasizes the hardware
layer which is hidden in the existing
simulation tools. Thus the “connection” of
instruction, operation and hardware
implementation is more clear in the
student’s minds.

Standalone tool The proposed HOMS tool does not need a
PC and can be operated autonomously.
Thus, constitutes a mobile laboratory
system unit.

Easy reproduction The hardware components of the HOMS
tool can be found easily in any market. On
the other hand, the multiple identical

© Panayotis (Panos) Papazoglou Page 12

blocks support easily the reproduction
procedure.

Open features The main advantage of the implemented
HOMS tool is the object-oriented approach
and the open-source hardware which
gives the freedom to any developer not
only to reproduce the same tool but also to
implement the whole simulator using
different blocks (with or without an LCD,
buttons, etc). Note that the embedded
software makes the difference.

Based on the mentioned functionality and features, it is obvious that the proposed HOMS
tool is more suitable for laboratory exercises in higher education in the field of computer
science and engineering. Laboratory academic stuff may use the proposed prototype
HOMS tool for building multiple boards and fully support a semester course.
Moreover, the existing HOMS tool can be extended under the development of a
thesis or a lab assignment or even under a research program for exploring new
methods and tools in engineering education.

2.3 Hardware components
Figure 2.2 shows the hardware block types that are used as internal microprocessor

components and external memory. There are four types of blocks. Block-A is a general-
purpose block and can be used for implementing registers and other microprocessor
components. Blocks B and C just support different display capabilities but are also based
on an Arduino UNO. Blocks A to C can be implemented as identical blocks using the
same display module. The only different block is the block-D where an Arduino MEGA
2560 is used for supporting the LCD/TFT screen as well as switches and buttons.

Fig.2.2 Block/Component types

© Panayotis (Panos) Papazoglou Page 13

Figure 2.3 shows the circuit connections between Arduino UNO and the seven-segment
module as well as the physical implementation. The seven-segment module is based on
two 74HC595 ICs. These ICs are shift registers with eight outputs each. For every digit
to be displayed, 8bits are transferred serially and thus, few cables are used. When the
74HC595 buffer is full, the corresponding segments are updated. Due to 74HC595 ICs,
no refresh is needed if the digits are not changed.

Fig. 2.3 (a) Block-A circuit and (b) physical implementation, code file: HOMS-REG.ino

Figures 2.4 to 2.6 show the circuits of block types B, C and D as well as the corresponding
physical implementations.
All the blocks are implemented with very simple circuits and no special experience is
needed. As shown in fig. 2.4, the block-B supports only an LCD 16x02 and a
potentiometer which is used for controlling the LCD contrast.

© Panayotis (Panos) Papazoglou Page 14

Fig. 2.4 (a) Block-B circuit and (b) physical implementation, code file: HOMS-ALU-SR.ino

On the other hand, block-C (fig. 2.5) has also two illuminated buttons and thus, more than
two cables are needed for the corresponding connection. Each button has four pins in
total. Tow pins are for the button operation, and two pins are for the embedded LED. The
button operation is supported through the pull-up internal resistors of the microcontroller
that are activated within the code. The button LEDs can be connected directly to 5V (using
a resistor of 150Ω) for permanent illumination or in digital pins of Arduino for controlling
illumination.

© Panayotis (Panos) Papazoglou Page 15

Fig. 2.5 (a) Block-C circuit and (b) physical implementation, code file: HOMS-CU.ino

Figure 2.6 shows the block-D circuit and implementation. Block-D has eight (8) switches
and three (3) buttons.

Fig. 2.6 (a) Block-D circuit and (b) physical implementation, code file: HOMS-MEM-OUT.ino

All the needed block circuits are very easy to be implemented. The concept of the HOMS
tool is to combine the same simple blocks for building a fully working system. The whole
system supports all the needed functions only if cooperation between blocks is performed.

© Panayotis (Panos) Papazoglou Page 16

2.4 Embedded software

Important note: only indicative instructions and operations have been implemented
in the following source-codes for supporting basic system functionality.

2.4.1 Register Unit
Every register Unit (Block A type, fig. 2.7) contains identical code for supporting
instructions (operations) such as LOAD, READ, INC, DEC, SHIFT and RESET. Three
basic functions (fig. 2.8) support the I2C communication (onReceive, onRequest) and
seven-segment display operation (display).

Fig. 2.7 Register Unit

When a single byte is received for executing an instruction regarding the register content,
the function onReceive is activated. On the other hand, when the control unit requests an
answer (e.g. READ register content), the function onRequest is activated. Finally, the
function display is activated when the seven-segment display value has to be updated.

Fig. 2.8 Register functions

Figure 2.9 shows the operation of the function onReceive. In the case of the LOAD
instruction, two bytes are used: one for the LOAD instruction (previous byte) and one for
the value (current byte) that will be stored in the register. The function checks always the
instruction code value for executing the corresponding operation (fig. 2.9).

© Panayotis (Panos) Papazoglou Page 17

Fig. 2.9 onReceive function operation

Figure 2.10 shows the operation of the function onRequest.

Fig. 2.10 onRequest function operation

© Panayotis (Panos) Papazoglou Page 18

SOURCE-CODE:

/***

REGISTER UNIT

All registers execute the same code,

the only difference is the I2C address

**

HOMS

Hardware-Oriented Microprocessor

Simulator

(C) Panayotis (Panos) Papazoglou

LICENSE:

Creative Commons

CC BY NC SA

International License

**/

//Change address based on block that is used

#define ADDRESS 2

//Include I2C library

#include <Wire.h>

/***

Declare PINS for seven segment display module

**/

#define Data 2

#define Clock 3

#define Load 4

//Define symbolic names for instructions codes

//between blocks

#define READ 65

#define RESET 66

#define SHIFT_L 67

#define SHIFT_R 68

#define DEC 69

#define INC 70

#define LOAD 71

/***

Segment status ON/OFF for one digit [0, F]

**/

byte hex[16]=

© Panayotis (Panos) Papazoglou Page 19

{

 0b00000011, //0

 0b10011111, //1

 0b00100101, //2

 0b00001101, //3

 0b10011001, //4

 0b01001001, //5

 0b01000001, //6

 0b00011111, //7

 0b00000001, //8

 0b00001001, //9

 0b00010001, //a

 0b11000001, //b

 0b11100101, //c

 0b10000101, //d

 0b01100001, //e

 0b01110001 //f

};

//byte that is received via I2C communication

byte rV;

//Previous received byte. Is used when a sequence of bytes

//has to be checked

byte rVprev=0;

//Initial register content

byte REG=0x00;

//Starting function (after reset or power on), runs once

void setup() {

 //Initialize Serial communication

 //for displaying debugging messages

 Serial.begin(9600);

 //Initialize seven segment module

 init_display();

 //Display register content

 display(REG);

 //Initialize I2C communication:

 //Set address

 //Enable ISR for receiving bytes and requests

© Panayotis (Panos) Papazoglou Page 20

 Wire.begin(ADDRESS);

 Wire.onReceive(onReceive);

 Wire.onRequest(onRequest);

}

void loop()

{

 //Nothing here

}

/***

Action Routine that is activated when

a byte is received

**/

void onReceive(int a)

{

 //Read received byte

 rV=Wire.read();

 //If previous byte is 71 (LOAD), then the current byte

 //is the value that will be loaded in register

 if (rVprev==LOAD) REG=rV;

 //Update variable for previous value

 rVprev=rV;

 //Actions based on received byte

 if (rV==INC) REG++;

 if (rV==DEC) REG--;

 if (rV==SHIFT_R) REG=REG>>1;

 if (rV==SHIFT_L) REG=REG<<1;

 if (rV==RESET) REG=0;

 //Display register content after performed action

 display(REG);

}

/***

Action Routine that is activated when

a request is received

**/

© Panayotis (Panos) Papazoglou Page 21

void onRequest()

{

 //If the received byte represents

 //the READ command, then the

 //register content is sent as answer

 if (rV==READ) Wire.write(REG);

 //Display register content

 display(REG);

}

/***

Display register content as HEX number on

seven segment module

Digit manipulation for left and right

seven segment display unit

**/

void display(byte REGnum)

{

//Convert decimal number REGnum to HEX

String Shex=String(REGnum,HEX);

//Variables for left and right digit

char LL;

char RR;

//If the hex number has only one digit, then

//the left digit is zero ('0') and the right digit

//is the first character of the string Shex

if (Shex.length()==1)

 { LL='0'; RR=Shex[0];}

//Otherwise, update left and right digit variables from

//the whole string Shex

else

{

 LL=Shex[0];

 RR=Shex[1];

}

//variables for accessing later the hex[] array

//in order to activate the correct segment

//on seven segment module

© Panayotis (Panos) Papazoglou Page 22

byte left,right;

//Serial.print("LL="); Serial.println(LL);

//Serial.print("RR="); Serial.println(RR);

//Translate one digit numbers from string form

//to single numbers for accessing hex[] array

//The calculations are based on the corresponding ASCII

//code for each string digit

//for example, character 'a' has the ASCII code 97

//the calculation is 'a'-87=97-87=10. The number 10

//will be used as index in the hex[] array (hex[10])

//for displaying 'A'

if (LL>='a' && LL<='f') left=LL-87; else

 if (LL>='0' && LL<='9') left=LL-48;

 if (RR>='a' && RR<='f') right=RR-87; else

 if (RR>='0' && RR<='9') right=RR-48;

//Serial.print(left); Serial.print(", "); Serial.println(right);

 //Display final hex number to seven segment display module

 digitalWrite(Load,LOW);

 shiftOut(Data,Clock, LSBFIRST, hex[right]);

 shiftOut(Data,Clock, LSBFIRST, hex[left]);

 digitalWrite(Load,HIGH);

}

/***

Initialize

seven segment module

**/

void init_display()

{

 pinMode(Data,OUTPUT);

 pinMode(Clock,OUTPUT);

 pinMode(Load, OUTPUT);

}

© Panayotis (Panos) Papazoglou Page 23

2.4.2 Arithmetic & Logic Unit (ALU) and Status Register (SR)
In current code version, only the ADD instruction is implemented. When an ADD
instruction is received, the content of temporary registers (input buffers) inside the ALU
unit is read, and then the addition T1+T1 is performed.

Fig 2.11 ALU-SR unit

The result is displayed on the LCD screen (fig 2.11) and the Status Register is updated.
The result is available inside the CPU model (simulator) through the internal data bus.

The following pseudo-code represents the above steps for the main function operation:

© Panayotis (Panos) Papazoglou Page 24

START
 Byte received?
 YES
 * Instruction=ADD
 * YES
 * * Read Temporary register T1
 * * Read Temporary register T2
 * * Result=T1+T2
 * * Update Status Register (SR)
 * * Display REG content
 * NO
 * -
 NO
 -
END

Function list

onReceive
when a byte is received (no answer is requested)

onRequest
when a byte is received and an answer is requested

READ_REG
read the content of another register (by setting the corresponding I2C address)

UPDATE_SR
update the status register (SR) content

DISPLAY_RES
display result and SR content on the LCD screen

The status register (SR) is declared as a three element array (byte SR[]={0,0,0};)

© Panayotis (Panos) Papazoglou Page 25

SOURCE-CODE:

/***

ALU (Arithmetic and Logic Unit)

SR (Status Register)

UNIT

**

HOMS

Hardware-Oriented Microprocessor

Simulator

(C) Panayotis (Panos) Papazoglou

LICENSE:

Creative Commons

CC BY NC SA

International License

**/

//UNIT ADDRESS = 9

#define ADDRESS 9

//Include I2C library

#include <Wire.h>

//Include LCD library

#include <LiquidCrystal.h>

//Set pins for LCD1602 connection

LiquidCrystal lcd(2,3,4,5,6,7);

//This UNIT Receives/Sends commands from/to other units as bytes

#define READ 65

#define ADD 72

//Variable that is used inside ISR

volatile byte rvTRUE=0;

//Byte received from other units

byte rV;

//Store result of the numerical calculation

byte result=0;

//Store the content of temporarily registers T1 and T2

byte T1=0;

byte T2=0;

© Panayotis (Panos) Papazoglou Page 26

//Flag array

byte SR[]={0,0,0}; //VF (oVerflow), ZF (Zero), SF (Sign)

//Starting function (after reset or power on), runs once

void setup()

{

 //Start I2C communication

 Wire.begin(ADDRESS);

 //Activate Receive & Request ISR routines

 Wire.onReceive(onReceive);

 Wire.onRequest(onRequest);

 //Initialize LCD screen

 lcd.begin(16,2);

 //Display result and flag status

 DISPLAY_RES();

}

void loop()

{

 //If a byte is received and is an ADD command,

 //then execute addition between the contents

 //of special registers T1 and T2

 //Store result in a variable, update SR[] array

 //and display result/SR contents

 if (rvTRUE==1)

 {

 if (rV==ADD)

 {

 T1=READ_REG(7);

 delay(100);

 T2=READ_REG(8);

 result=T1+T2;

 UPDATE_SR(result);

 DISPLAY_RES();

 }

 rvTRUE=0;

 }

}

© Panayotis (Panos) Papazoglou Page 27

/***

ISR routine

Is activated when a byte is received

via I2C communication

**/

void onReceive(int a)

{

 rV=Wire.read();

 //Flag for activating code in order to read T1 and T2 contents

 //I2C functions can not be called within an active I2C routine

 rvTRUE=1;

}

/***

ISR routine

Is activated when a request is received

via I2C communication

**/

void onRequest()

{

 //Send result (ALU calculation) as answer to an I2C request

 Wire.write(result);

}

/***

Read the content of a Register

with address addr

**/

byte READ_REG(byte addr)

{

byte ans;

 Wire.beginTransmission(addr);

 Wire.write(READ);

 Wire.endTransmission();

 //Receive answer

 Wire.requestFrom(addr, 1);

 if (Wire.available())

 ans = Wire.read();

return ans;

}

© Panayotis (Panos) Papazoglou Page 28

/***

Update Status Register Flags based

on result status

**/

void UPDATE_SR(byte res)

{

if (res==0) SR[1]=1; else SR[1]=0;

if (res<0) SR[2]=1; else SR[2]=0;

if (res>255) {SR[0]=1; result=0;} else SR[0]=0;

}

/***

Display result and Status Register Flags

on LCD screen

**/

void DISPLAY_RES()

{

 lcd.setCursor(0,0); lcd.print("RES10="); lcd.setCursor(6,0);

 lcd.print(result);

 lcd.setCursor(10,0); lcd.print("HEX="); lcd.setCursor(14,0);

 lcd.print(String(result,HEX));

 lcd.setCursor(4,1); lcd.print("V:"); lcd.setCursor(6,1); lcd.print(SR[0]);

 lcd.setCursor(8,1); lcd.print("Z:"); lcd.setCursor(10,1); lcd.print(SR[1]);

 lcd.setCursor(12,1); lcd.print("S:"); lcd.setCursor(14,1); lcd.print(SR[2]);

}

© Panayotis (Panos) Papazoglou Page 29

2.4.3 Memory and I/O system
The HOMS system executes the assembly instructions that are stored inside the memory.
Thus, a memory system is implemented. Additionally, the HOMS supports user input for
entering assembly instructions in memory. For instruction data entry, a hardware user
interface is also developed.

Fig. 2.12 MEM, I/O unit

Function list

init_sw_buttons
Initialize switches and buttons using microcontroller PULL_UP resistors

init_buttonLEDs
Initialize button LEDs

init_TFT
Initialize TFT screen

TFT_welcome
Display welcome messages

print_dechex
Display DEC and HEX value on TFT screen based on 8 states of the switches

print_text
display text (String) on the TFT screen

clear_TFT
clear TFT and fill with color

init_mem
initialize memory (integer array of 256 locations)

© Panayotis (Panos) Papazoglou Page 30

onReceive
receive from control unit (e.g. LOAD instruction for storing data in memory)

onRequest
control unit requests the content of a given memory address

set_prog
for auto-filling memory locations from prog[] array (preloaded instructions for running
the first demo)

SOURCE-CODE:

/***

MEMORY & OUTPUT UNIT

**

HOMS

Hardware-Oriented Microprocessor

Simulator

(C) Panayotis (Panos) Papazoglou

LICENSE:

Creative Commons

CC BY NC 3.0

International License

**/

/***

LIBRARIES for the TFT 2.4 Inch screen

**/

#include <Adafruit_GFX.h>

#include <MCUFRIEND_kbv.h>

//Include I2C library

#include <Wire.h>

//Object declaration for accessing TFT library functions

//Every function call starts with the prefix tft.

MCUFRIEND_kbv tft;

//TFT Color codes for easy access

#define BLACK 0x0000

#define BLUE 0x001F

#define RED 0xF800

© Panayotis (Panos) Papazoglou Page 31

#define GREEN 0x07E0

#define CYAN 0x07FF

#define MAGENTA 0xF81F

#define YELLOW 0xFFE0

#define WHITE 0xFFFF

//A byte is read from memory when the LOAD command is received

#define LOAD 71

//8bit switch pins

int bitsw[]={28,26,24,22,38,36,34,32};

//Button pins

int button[]={42,44,46};

//Button LEDs pins

int buttonLED[]={48,50,52};

//Button state

int bstate[]={0,0,0};

//Switch state 1=inactive (due to PULL_UP resistors)

int swstate[]={1,1,1,1,1,1,1,1};

//Memory: 256 locations, starting address 0, ending address 255 (FF hex)

int mem[256];

//Current selected address

int addr=0;

//Current data for storing in memory

int data=0;

//Keep previous values for updating screen only if values are changed

int addrprev=0, dataprev=0;

//Number in dec format

float dec=0;

//Integer dec number

int idec=0;

//Previous dec value (round is used before decprev update)

int decprev=0;

© Panayotis (Panos) Papazoglou Page 32

//Previous hex value (round is used before hexprev update)

String fhexprev;

//Received data from control unit

byte rV=0;

//Previous received data from control unit

byte rVprev=0;

//Flag that is activated when an address is received

byte ADDRflag=0;

//Declare next array if you want to have a preloaded code in memory

byte prog[]={4, 8, 10, 0, 6, 0, 14, 0, 17, 0};

//Starting function (after reset or power on), runs once

void setup(void)

{

 //initialize I2C communication (address 11)

 Wire.begin(11);

 //Enable ISR routines for receiving bytes and requests

 Wire.onReceive(onReceive);

 Wire.onRequest(onRequest);

 //Initialize Serial communication

 //for displaying debugging messages

 Serial.begin(9600);

 //initialize switches and buttons

 init_sw_buttons();

 //initialize button LEDs

 init_buttonLEDs();

 //initialize memory

 init_mem(256);

 //Store prog[] bytes in memory (preload code)

 set_prog();

 //initialize TFT

 init_TFT();

© Panayotis (Panos) Papazoglou Page 33

 //display welcome messages on TFT

 TFT_welcome();

}

/***

Main function (always active)

**/

void loop(void)

{

/***

Read switch states (8 switches)

store each state in swstate[] array

use bitsw[] array for switch pins

**/

 for(int i=0;i<8;i++)

 swstate[i]=digitalRead(bitsw[i]);

 //print dec and hex value on screen (based on switches state)

 print_dechex();

/***

Read button states (3 buttons)

store each state in bstate[] array

use button[] array for button pins

**/

for(int i=0;i<3;i++)

 bstate[i]=digitalRead(button[i]);

/***

Check button states from bstate[] array

pins:

button[0]=GREEN, button[1]=RED RIGHT, button[2]=RED LEFT

if the RED LEFT button is pressed, the dec value is stored as address

if the RED RIGHT button is pressed, the dec value is tored as data (content)

if the GREEN button is pressed, the user wants to store data in the address addr

or wants to display memory contents on the screen

**/

if (bstate[2]==LOW) addr=round(dec); if (bstate[1]==LOW) data=round(dec);

if (bstate[0]==LOW)

{

 //If both addr and data values are 128, the memory contents are displayed on the TFT screen

 if ((addr==128) && (data==128))

 {

 //Clear TFT screen

© Panayotis (Panos) Papazoglou Page 34

 clear_TFT(BLACK);

 //Display titles for the two DATA columns

 print_text(YELLOW, RED,2,10,10,"ADDR"); print_text(YELLOW, RED,2,60,10,"DATA");

 print_text(YELLOW, RED,2,110,10,"ADDR"); print_text(YELLOW, RED,2,160,10,"DATA");

 //Variables for moving to the desired X,Y position

 int x=10, y=25;

 //Loop for display memory contents, 1st column from 0 to 10, 2nd column from 11 to 21

 for(int i=0;i<11;i++)

 {

 //Display address for first range

 print_text(WHITE, BLACK,2,x,y,String(i));

 //Display address content for first range

 print_text(WHITE, BLACK,2,x+50,y,String(mem[i]));

 //Display address for second range

 print_text(WHITE, BLACK,2,x+100,y,String(i+11));

 //Display address content for second range

 print_text(WHITE, BLACK,2,x+150,y,String(mem[i+11]));

 //Update Y position for changing line

 y+=20;

 }

 //Display EXIT label

 print_text(WHITE, BLUE,2,220,180,"EXIT");

 //Wait on that screen until green button is pressed

 while(digitalRead(button[0])==HIGH) {;}

 //Clear TFT screen

 clear_TFT(BLACK);

 }

 else

 //the user has selected to store data value in memory

 {

 //Display SET for confirming green button press

 print_text(YELLOW, RED,3,220,180,"SET");

© Panayotis (Panos) Papazoglou Page 35

 //Store data value in memory (mem[] array)

 mem[addr]=data;

 delay(100);

 //Display OK. The store process is successful

 print_text(WHITE, BLUE,3,220,180,"OK!");

 delay(500);

 }

}

//If a new ADDRESS is entered, clear for the new value

if (addr!=addrprev) tft.fillRect(50, 180,100,35,BLACK);

//If new DATA are entered, clear for the new value

if (data!=dataprev) tft.fillRect(150, 180,100,35,BLACK);

//Store current values of data and address before the next update

dataprev=data; addrprev=addr;

//Display current address value (updated with the RED LEFT button based on switches state)

print_text(WHITE, RED,3,10,180,"A:");

print_text(YELLOW, RED,3,50,180,String(addr));

//Display current data value (updated with the RED RIGHT button based on switches state)

print_text(WHITE, RED,3,120,180,"D:");

print_text(YELLOW, RED,3,150,180,String(data));

//Display label for GREEN button

print_text(BLACK, GREEN,3,220,180,"SET");

//Delay before return to loop starting point

delay(30);

}

/***

Initialize switches and buttons

using microcontroller PULL_UP resistors.

If a switch or a button is inactive

the corresponding state is HIGH

**/

void init_sw_buttons()

{

 for(int i=0;i<8;i++)

© Panayotis (Panos) Papazoglou Page 36

 pinMode(bitsw[i],INPUT_PULLUP);

 for(int i=0;i<3;i++)

 pinMode(button[i],INPUT_PULLUP);

}

/***

Initialize button LEDs.

Set all pins to HIGH.

Lighting the LEDs

**/

void init_buttonLEDs()

{

 for(int i=0;i<3;i++)

 {

 pinMode(buttonLED[i],OUTPUT);

 digitalWrite(buttonLED[i],HIGH);

 }

}

/***

Initialize TFT screen

rotate coordinate system to use

screen as landscape

**/

void init_TFT()

{

 uint16_t ID = tft.readID();

 tft.begin(ID);

 tft.setRotation(1); //PORTRAIT

 clear_TFT(BLACK);

}

/***

Display welcome messages

**/

void TFT_welcome()

{

 clear_TFT(BLUE);

 int x=30;

 print_text(WHITE,BLUE, 3, x,30,"Hardware");

© Panayotis (Panos) Papazoglou Page 37

 print_text(WHITE,BLUE, 3, x,60,"based");

 print_text(WHITE,BLUE, 3, x,90,"Microprocessor");

 print_text(WHITE,BLUE, 3, x,120,"Simulator V1.0");

 print_text(YELLOW,BLUE, 2, 20,160,"(C) P. PAPAZOGLOU, 2023");

 print_text(WHITE, BLUE,2,60,200,"-- PRESS GREEN --");

 //Wait on that screen until green button is pressed

 while(digitalRead(button[0])==HIGH) {;}

 clear_TFT(BLACK);

 }

/***

Display DEC and HEX value on screen

based on 8 states of the switches

8 states = 8 bits

**/

void print_dechex()

{

 //Initialize dec value

 dec=0;

 //Exponent of two starting from the MSB bit

 int p=7;

 //Variable for bit value based on switches state (switch=0=active, bit=1)

 int b;

 //Variables for moving to the desired X,Y locations

 int x=10, y=50;

 //Display label for the binary representation

 print_text(WHITE, BLACK, 5, 10, 10, "BIN");

 //Display 8bit value and calculate the decimal value

 for(int i=0;i<8;i++)

 {

 //Set bit value based on switch state

 if (swstate[i]==LOW) b=1; else b=0;

 //Display current bit

 print_text(YELLOW, BLACK, 4, x, y, String(b));

 //Update X location for displaying the next right bit

© Panayotis (Panos) Papazoglou Page 38

 x+=30;

 //Calculate dec value for current bit (b*2^p)

 float value=b*pow(2,p);

 //Update sum for the whole number

 dec=dec+value;

 //Decrease the exponent (based on bit position in the number)

 p--;

 }

 //idec is the integer representation of dec (round function is used

 //for value integrity due to type conversion)

 idec=round(dec);

 //Convert decimal value to hexadecimal (hex)

 String fhex = String(idec, HEX);

 //For a new hex value, clear display field

 if (fhex.compareTo(fhexprev)!=0) tft.fillRect(180, 120,50,40,BLACK);

 //Keep current hex value (as previous)

 fhexprev=fhex;

 //Display label and hex value on screen

 print_text(WHITE, BLACK, 4, 150, 90, "HEX");

 print_text(YELLOW, BLACK, 4, 170, 130, fhex);

 //For a new dec value, clear display field

 if (idec!=decprev) tft.fillRect(10, 120,215,40,BLACK);

 //Keep current dec value (as previous)

 decprev=idec;

 //Display label and dec value on screen

 print_text(WHITE, BLACK, 5, 10, 90, "DEC");

 print_text(YELLOW, BLACK, 4, 10, 130, String(idec));

}

/***

display text (String) on the TFT screen

fcolor: text color

bcolor: text background color

text_size: size of text

xpos: X position on screen

© Panayotis (Panos) Papazoglou Page 39

ypos: Y position on screen

text: text to be displayed

**/

void print_text(int fcolor, int bcolor, int text_size, int xpos, int ypos, String text)

{

 tft.setTextColor(fcolor, bcolor);

 tft.setTextSize(text_size);

 tft.setCursor(xpos, ypos);

 tft.print(text);

}

/***

clear TFT screen, fill with color

**/

void clear_TFT(int color)

{

tft.fillScreen(color);

}

/***

initialize memory with size of locations

locations: total array locations

**/

void init_mem(int locations)

{

 for(int i=0;i<locations;i++)

 mem[i]=0;

}

/***

When data are received from control unit

**/

void onReceive(int a)

{

 rV=Wire.read();

 Serial.print("rV:"); Serial.println(rV);

 //If previous command is LOAD, then the current byte represents an address

 if (rVprev==LOAD) ADDRflag=1;

 rVprev=rV;

}

© Panayotis (Panos) Papazoglou Page 40

/***

When data are requested from control unit

**/

void onRequest()

{

 //If the contents of an address are requested

 if (ADDRflag==1)

 {

 Serial.println("ADDRflag=1");

 Serial.print("rV:");Serial.print(rV);

 Serial.print(", content:"); Serial.println(mem[rV]);

 Wire.write(mem[rV]);

 ADDRflag=0;

 rVprev=0;

 }

}

/***

Preload program bytes in memory.

Update mem[] array from prog[] array

**/

void set_prog()

{

 for(int i=0;i<10;i++) mem[i]=prog[i];

}

© Panayotis (Panos) Papazoglou Page 41

2.4.4 Control Unit (CU)
The control unit constitutes the most important component of the HOMS system. This unit
fetches instruction data from the memory unit, decodes each instruction (type and
parameters) and finally sends commands to other components for supporting the
executing cycle.

In other words, synchronizes the HOMS components operation for supporting a fully
working system regarding the instruction execution. The required steps for each
instruction execution are implemented within the CU.

For creating new assembly instructions, new source code has to be added inside
the CU. The CU source-code is the longest code as compared to other HOMS units.

Fig. 2.13 CU unit

© Panayotis (Panos) Papazoglou Page 42

Fig. 2.14 Execution process

The flow chart (fig 2.14) shows the whole procedure for (a)
fetching instruction data from memory and (b) executing
instruction through the control unit. This procedure can be
described in steps as follows:

Step 1: Read PC (Program counter) for finding where the
next instruction address is

Step 2: Store this address to MAR (Memory Access
Register) in order to place the desired memory address on
address bus

Step 3: Fetch instruction code via data bus and store this
code in MBR (Memory Buffer register) and increase MAR by
one

Step 4: Fetch parameter code via data bus and store this
code in MBR (Memory Buffer register)

Step 5: Decode instruction data and execute, a) copy the
contents of registers A and B to ALU registers T1 and T2
respectively, b) perform the addition T1+T2 and update SR
(Status Register), c) store result to register A

Step 6: Update PC (Program Counter) for fetching next
instruction code from memory

© Panayotis (Panos) Papazoglou Page 43

SOURCE-CODE:

/***

CONTROL UNIT

I2C MASTER

**

HOMS

Hardware-based Microprocessor

Simulator

(C) Panayotis (Panos) Papazoglou

LICENSE:

Creative Commons

CC BY NC SA

International License

**/

//Please ignore any compilation warnings

//due to function overload (the same function name

//can be used but with different parameters).

//the MCU executes the function which matches

//with parameters

//Define symbolic names for sending commands to other blocks

//The I2C communication is based on one byte transmit/receive

#define READ 65

#define RESET 66

#define SHIFT_L 67

#define SHIFT_R 68

#define DEC 69

#define INC 70

#define LOAD 71

#define ADD 72

//Set symbolic names for button/LED pins

#define GREEN_button 11

#define RED_button 12

#define GREEN_LED 10

#define RED_LED 9

//Include I2C library

//The I2C function are called using the prefix Wire.

#include <Wire.h>

//Include LCD library

#include <LiquidCrystal.h>

© Panayotis (Panos) Papazoglou Page 44

//Set pins for LCD1602 connection

LiquidCrystal lcd(3,4,5,6,7,8);

//Declare variables for the needs of the CU unit (locally)

byte RA=0;

byte RB=0;

byte RC=0;

byte PC=0;

byte MAR=0;

byte MBR=0;

byte T1=0;

byte T2=0;

byte RS=0;

byte command=0;

byte param=0;

String hexval="";

byte blockADDR;

//Delay between execution process steps

int d=3000;

//Starting function (after reset or power on), runs once

void setup()

{

 //Initialize I2C communication

 Wire.begin();

 //Initialize Serial communication

 //for displaying debugging messages

 Serial.begin(9600);

 //Initialize buttons & LED-buttons

 init_buttons_led();

 //Initialize LCD

 lcd.begin(16, 2);

 //Initial value for entering the while loop

 command=0;

 //Clear registers (content=00)

 //Wait for RED button to start execution

 INIT();

© Panayotis (Panos) Papazoglou Page 45

 /****************************

 MAIN EXECUTION PROCESS

 *****************************/

 while (command!=17)

 {

 READ_PC(); //Read PC content for instruction starting address

 PC2MAR(); //Update MAR for accessibg memory address

 FETCH1(); //Fetch 1st byte from memory (instruction code)

 UPDATE_MAR(); //Update MAR for fetching 2nd byte

 FETCH2(); //Fetch 2nd byte (instruction parameter)

 DECODE_EXEC();//Decode instruction and execute

 UPDATE_PC(); //Update PC content for next instruction

 //Uncomment the following two code lines if you want a pause

 //between instruction execution

 //lcdtext(0,1,"Press <NEXT>");

 //wait();

 }

 //Out of while loop. The following code is executed when the instruction code is 17

 //which corresponds to STOP instruction

 lcd.clear();

 lcdtext(1,0,"END OF PROGRAM");

 lcdtext(3,1,"EXECUTION");

}//End of SETUP

/***

READ PC (Program Counter), PC block address=4

**/

void READ_PC()

{

 //Display message on LCD

 lcd.clear();

 lcdtext(0,0,"Reading PC REG..");

 delay(d);

 //Read PC content. Store content in PC variable

 PC=READ_REG(4);

 //Display READ results on LCD

 lcd.clear();

© Panayotis (Panos) Papazoglou Page 46

 lcd.setCursor(0,0); lcd.print("PC-Prog.Counter");

 lcd.setCursor(0,1); lcd.print("PC10=");

 lcd.setCursor(5,1); lcd.print(PC);

 lcd.setCursor(9,1); lcd.print("PC16=");

 hexval = String(PC, HEX);

 lcd.setCursor(14,1); lcd.print(hexval);

 //Wait before next step

 delay(d);

} //End of READ_PC

/***

Store PC contents to register MAR

for accessing memory address

MAR=PC (MAR block address=5)

**/

void PC2MAR()

{

 //Display message on LCD

 lcd.clear();

 lcdtext(0,0,"MAR <-- PC ...");

 delay(d);

 //LOAD PC content in MAR register

 WRITE_REG(5,PC);

 //Update variable

 MAR=PC;

 //Display message on LCD

 lcd.clear();

 lcdtext(0,0,"Check MAR...");

 delay(d);

}//End of PC2MAR

/***

FETCH 1st byte from memory, mem[MAR]

Instruction code

**/

void FETCH1()

{

 //Display message on LCD

 lcd.clear();

© Panayotis (Panos) Papazoglou Page 47

 lcdtext(0,0,"FETCH byte 1...");

 delay(d);

 //LOAD MAR content in MEM/OUT Unit

 //for accessing the corresponding address

 WRITE_REG(11,MAR);

 //Receive memory content

 //Store content in MBR variable

 blockADDR=11;

 Wire.requestFrom(blockADDR, 1);

 if (Wire.available())

 MBR = Wire.read();

//Store instruction code in command variable

command=MBR;

//Display information (MAR, MBR) on LCD

lcd.clear();

lcd.setCursor(0,0); lcd.print("MBR<--mem[");

lcd.setCursor(10,0); lcd.print(MAR);

lcd.setCursor(13,0); lcd.print("]");

lcd.setCursor(0,1); lcd.print("(10)=");

lcd.setCursor(5,1); lcd.print(MBR);

lcd.setCursor(9,1); lcd.print("(16)=");

hexval = String(MBR, HEX);

lcd.setCursor(14,1); lcd.print(hexval);

delay(d);

//Update MBR register from MBR variable

WRITE_REG(6,MBR);

//Display message on LCD

lcd.clear();

lcdtext(0,0,"Check MBR");

delay(d);

lcd.clear();

lcdtext(0,0,"command is"); lcd.setCursor(11,0); lcd.print(command);

delay(d);

} //End of FETCH1

/***

Updating MAR for accessing

MAR=PC+1 (MAR address=5)

© Panayotis (Panos) Papazoglou Page 48

**/

void UPDATE_MAR()

{

 //Display message on LCD

 lcd.clear();

 lcdtext(0,0,"Updating MAR...");

 //Update MAR register for fetching the next byte from memory

 //(from next address)

 WRITE_REG(5,PC+1);

 delay(d);

 //Update variable

 MAR=PC+1;

 //Display message on LCD

 lcd.clear();

 lcdtext(0,0,"Check MAR");

 delay(d);

}

/***

FETCH 2nd byte from memory, mem[MAR]

Parameter code

**/

void FETCH2()

{

//Display message on LCD

lcd.clear();

lcdtext(0,0,"FETCH byte 2...");

//LOAD MAR content in MEM/OUT Unit

//for accessing the corresponding address

WRITE_REG(11,MAR);

delay(d);

//Receive memory content

//Store content in MBR variable

blockADDR=11;

Wire.requestFrom(blockADDR, 1);

if (Wire.available())

 MBR = Wire.read();

© Panayotis (Panos) Papazoglou Page 49

//Store parameter code in param variable

param=MBR;

//Display information (MAR, MBR) on LCD

lcd.clear();

lcd.setCursor(0,0); lcd.print("MBR<--mem[");

lcd.setCursor(10,0); lcd.print(MAR);

lcd.setCursor(13,0); lcd.print("]");

lcd.setCursor(0,1); lcd.print("(10)=");

lcd.setCursor(5,1); lcd.print(MBR);

lcd.setCursor(9,1); lcd.print("(16)=");

hexval = String(MBR, HEX);

lcd.setCursor(14,1); lcd.print(hexval);

delay(d);

//update register MBR

WRITE_REG(6,MBR);

//Display messages on LCD

lcd.clear();

lcdtext(0,0,"Check MBR");

delay(d);

lcd.clear();

lcdtext(0,0,"param is"); lcd.setCursor(11,0); lcd.print(param);

delay(d);

} //END of FETCH2

/***

Decoding instruction and execution

Instruction block: [command][param]

Implemented Assembly Instructions

CODE INSTRUCTION

==== ===========

04 LOD A,num

10 INC A

06 MOV B,A

14 ADD A,B

17 STOP

command=instruction code

param=parameter code

**/

© Panayotis (Panos) Papazoglou Page 50

//command,param

void DECODE_EXEC()

{

/****************************

LOD A,num (A=num)

*****************************/

if (command==4)

{

 //Display messages on LCD

 lcd.clear();

 lcdtext(0,0,"CMD:LOD A,"); lcd.setCursor(10,0); lcd.print(param);

 lcdtext(0,1,"Executing...");

 delay(d);

 //LOAD param (num) in Register A

 WRITE_REG(1,param);

}

/****************************

INC A (A=A+1)

*****************************/

if (command==10)

{

 //Display messages on LCD

 lcd.clear();

 lcdtext(0,0,"CMD:INC A");

 lcdtext(0,1,"Executing...");

 delay(d);

 //Send INC command to register A

 blockADDR=1;

 Wire.beginTransmission(blockADDR);

 Wire.write(INC);

 Wire.endTransmission();

 //Display messages on LCD

 lcd.clear();

 lcdtext(0,0,"Check REG-A");

}

/****************************

MOV B,A (B=A)

*****************************/

© Panayotis (Panos) Papazoglou Page 51

if (command==6)

{

 //Display messages on LCD

 lcd.clear();

 lcdtext(0,0,"CMD:MOV B,A");

 lcdtext(0,1,"Executing...");

 delay(d);

 //Read from register A

 //Store content to variable RA

 RA=READ_REG(1);

 Serial.print("Read=RA:"); Serial.println(RA);

 //Store register A content (RA) in register B

 WRITE_REG(2,RA);

 //Display message on LCD

 lcd.clear();

 lcdtext(0,0,"Check REG-B");

}

/****************************

ADD A,B

*****************************/

if (command==14)

{

 //Display message on LCD

 lcd.clear();

 lcdtext(0,0,"CMD:ADD A,B");

 delay(d);

//READ from register A, Store in variable RA

RA=READ_REG(1);

//READ from register B, Store in variable RB

RB=READ_REG(2);

//Store register A content in register T1

WRITE_REG(7,RA);

//Store register B content in register T2

WRITE_REG(8,RB);

//Display messages on LCD

lcd.clear();

© Panayotis (Panos) Papazoglou Page 52

lcdtext(0,0,"Check T1,T2");

lcdtext(0,1,"ALUEXEC...");

delay(d);

//Send ADD instruction to ALU/SR Unit

byte RES=SEND_ALU(9,ADD);

//Store ALU result in register A

WRITE_REG(1,RES);

//Display message on LCD

lcd.clear();

lcdtext(0,0,"Check RA,ALU,SR");

delay(d);

}

}//End of DECODE_EXEC

/***

Update PC register content

for fetching next instruction bytes

from memory

**/

void UPDATE_PC()

{

 //Send two INC commands to PC register

 Wire.beginTransmission(4);

 Wire.write(INC);

 Wire.endTransmission();

 delay(50);

 Wire.beginTransmission(4);

 Wire.write(INC);

 Wire.endTransmission();

 delay(50);

 //Update variable

 PC=PC+2;

}

void loop()

{

 //Nothing here

}

© Panayotis (Panos) Papazoglou Page 53

/***

Initialize PULL-UP resistors

Every button is activated when

a PULL-UP pin goes to LOW (GND)

button-state=1 inactive

button-state=0 active

Activate LEDs inside buttons

**/

void init_buttons_led()

{

 pinMode(GREEN_button,INPUT_PULLUP);

 pinMode(RED_button,INPUT_PULLUP);

 pinMode(GREEN_LED, OUTPUT);

 pinMode(RED_LED, OUTPUT);

 digitalWrite(GREEN_LED,HIGH);

 digitalWrite(RED_LED,HIGH);

}

/***

Pause

wait on GREEN button press

**/

void wait()

{

 while(digitalRead(GREEN_button)==HIGH) {;}

 delay(250);

}

/***

Pause

wait on RED button press

**/

void wait_red()

{

 while(digitalRead(RED_button)==HIGH) {;}

 delay(250);

© Panayotis (Panos) Papazoglou Page 54

}

/***

Function for displaying Strings on LCD

**/

void lcdtext(int col, int lin, String text)

{

 lcd.setCursor(col,lin);

 lcd.print(text);

}

/***

Clear all registers (set content=0)

Register address = 1 = Register A

Register address = 2 = Register B

Register address = 3 = Register C

Register address = 4 = Register PC

Register address = 5 = Register MAR

Register address = 6 = Register MBR

Register address = 7 = Register T1

Register address = 8 = Register T2

**/

void clear_REGS()

{

 for(int i=1;i<=8;i++)

 {

 Wire.beginTransmission(i);

 Wire.write(RESET);

 Wire.endTransmission();

 delay(150);

 }

}

/***

Display messages on LCD

and call clear register function

**/

void INIT()

{

lcd.clear();

lcdtext(0,0,"RESET REGs..");

lcdtext(0,1,"Please Wait...");

clear_REGS();

© Panayotis (Panos) Papazoglou Page 55

delay(d);

lcd.clear();

lcdtext(0,0,"Press RED button");

lcdtext(0,1,"to START");

wait_red();

}

/***

Read register content

Send READ command

Register address = addr

Return content

**/

byte READ_REG(byte addr)

{

byte ans;

 Wire.beginTransmission(addr);

 Wire.write(READ);

 Wire.endTransmission();

 delay(200);

 //Receive answer

 Wire.requestFrom(addr, 1);

 if (Wire.available())

 ans = Wire.read();

return ans;

}

/***

Send command to ALU/SR unit

Address = addr

command to ALU/SR = instruction

Return ALU result

**/

byte SEND_ALU(byte addr, byte instruction)

{

byte ans;

 Wire.beginTransmission(addr);

© Panayotis (Panos) Papazoglou Page 56

 Wire.write(instruction);

 Wire.endTransmission();

 delay(300);

 //Receive answer (PC content)

 Wire.requestFrom(addr, 1);

 if (Wire.available())

 ans = Wire.read();

return ans;

}

/***

Load a number to a specific register

Register address = addr

Number = data

**/

void WRITE_REG(byte addr, byte data)

{

Wire.beginTransmission(addr);

Wire.write(LOAD);

Wire.endTransmission();

delay(200);

Wire.beginTransmission(addr);

Wire.write(data);

Wire.endTransmission();

}

© Panayotis (Panos) Papazoglou Page 57

CHAPTER 3
System Operation

3.1 HOMS as a system
The previous mentioned components (blocks) have to be reused in order to form a

working microprocessor model. The working model consists of General and Special
Purpose Registers (GPR-SPR, block-A type), an Arithmetic and Logic Unit (ALU, block-
B type), a Control Unit (CU, block-C type) and the memory/output system unit (block-D
type). The real model includes eight (8) blocks as registers, one (1) block for Control Unit,
one (1) block for ALU and Status Register and one (1) block for the memory/output
system. Figure 3.1 shows how the hardware components constitute a working system
(microprocessor, memory with user data input and output).

Fig. 3.1 Block organization for a working system

As shown in fig. 3.2, the data transfer between units (e.g. registers, memory) is performed
via communication buses. This communication is implemented in the real model by using
the I2C serial protocol. This practical approach is chosen in order to simplify the physical
connections between blocks. There are two pairs of common connections between all
blocks (SDA-Serial Data, SCL-Serial Clock). Figure 3.2 shows the I2C connections.

© Panayotis (Panos) Papazoglou Page 58

Fig. 3.2 Common connections between blocks

The proposed HOMS tool has been physically installed in a hard aluminum suitcase for
supporting mobility and protecting the whole system device from any damage. Figure 3.3
shows the fully working HOMS system.

Fig. 3.3 The final working HOMS tool

© Panayotis (Panos) Papazoglou Page 59

3.2 Assembly program execution

As mentioned before, the HOMS tool constitutes a working microprocessor that
interacts with the memory unit for executing assembly instructions. All the available
HOMS blocks have to communicate to each other via the I2C bus. The HOMS is based
on an 8bit architecture. Thus, registers, memory contents and addresses are all 8bit. The
memory unit just holds the instruction data (the first byte for the command and the second
byte for the parameter). The control unit ensures that in each execution step, two bytes
will be transferred to “microprocessor” starting from the current address that the PC
register points to. The value of instruction bytes (command and parameter) makes sense
only for the control unit in order to perform the needed actions (instruction execution).
Inside the control unit, an execution loop takes place. Figure 3.4 shows the flow chart for
the execution loop. Based on this process, the memory locations are scanned and the
control unit executes the corresponding instructions. When a STOP instruction (code
value 17) is found, the execution process is terminated. Within the loop, the following
tasks are performed:

• READ_PC. The starting address of the next instruction to be executed is retrieved
from PC register. Every assembly instruction that is stored in memory, has a
constant length of two bytes. Thus, the fetching from memory can be implemented
in a simple way.

• PC2MAR. Inside a microprocessor, the MAR (Memory Access Register) is directly
connected to address bus, in order to activate a specific address for reading or
writing data. At this step, the content of PC register is copied to MAR.

• FETCH1. Based on the MAR content, the first instruction byte is fetched from the
memory. This byte is transferred to MBR (Memory Buffer Register) in order to be
available to the control unit.

• UPDATE_MAR. The content of MAR register is updated (MAR=MAR+1) in order
to point to the next address. Thus, the next byte fetching is prepared correctly.

• FETCH2. Based on the new MAR content, the second instruction byte is fetched

from the memory. This byte is also transferred to MBR (Memory Buffer Register)

in order to be available to the control unit.

• DECODE_EXEC. Now the command block is completed. The first byte represents
the command code and the second byte the parameter. If an assembly instruction
has no parameter, this byte is zero but is transferred from the memory based on
the above steps.

• UPDATE_PC. After instruction execution, the contents of PC register are updated
(adding the number 2) for fetching the next instruction from memory.

© Panayotis (Panos) Papazoglou Page 60

Fig. 3.4 Execution loop

For demonstrating the operation of the HOMS tool, an assembly program is stored in memory and
finally executed by the implemented microprocessor model. Table 3.1 shows the demo program (symbolic
instruction, byte code and memory contents).

Table 3.1

Demo program

Instruction Byte code
Address (content) (in

decimal)

LOD A,8 (dec) 04 08, (hex) 04 08 00* (04), 01 (08)

INC A (dec) 10 00, (hex) 0A 00 02* (10), 03 (00)

MOV B,A (dec) 06 00, (hex) 06 00 04* (06), 05 (00)

ADD A,B (dec) 14 00, (hex) 0E 00 06* (14), 07 (00)

STOP (dec) 17 00, (hex) 11 00 08* (17), 09 (00)

* Instruction starting address (PC content)

Table 3.2 shows as an example, how the instruction ADD A,B is executed.

Table 3.2
Execution steps for instruction ADD A,B

Register STEP

1 2 3 4 5 6 7 8 9 10 11

PC 06

D
E

C
O

D
E

A
d
d

it
io

n

in
s
id

e
 A

L
U

 08

MAR 06 07

MBR 14 00

A [A+B]

B

T1 [A]

T2 [B]

As shown in table 6, the instruction ADD A,B is executed as follows:
STEP 1: The PC shows the starting address of the instruction to be executed (ADD A,B)
STEP 2: The starting address of the instruction is stored in MAR register
STEP 3: The first instruction byte is fetched and is stored in MBR register

© Panayotis (Panos) Papazoglou Page 61

STEP 4: The MAR address is increased by one, in order to point to the next address where the second
byte of the instruction is stored
STEP 5: The second instruction byte is fetched and is stored in MBR register
STEP 6: The control unit decodes the instruction bytes and starts to execute the instruction
STEP 7: The content of register A is copied in the register T1 which is the first input of the ALU (Arithmetic
and Logic Unit)
STEP 8: The content of register B is copied in the register T2 which is the second input of the ALU
(Arithmetic and Logic Unit)
STEP 9: The addition T1+T2 is performed inside the ALU
STEP 10: The result is stored in register A
STEP 11: The content of the PC register is updated (increased by two) for pointing to the next instruction
in memory

The following figures are indicative of the execution/working process. Figure 3.5 shows the instruction bytes
(in decimal) in memory locations.

Fig. 3.5 Program bytes in memory unit

Figure 3.6 is a snapshot of the execution process for the instruction ADD A,B. The PC register point to the
starting address 06 where the first byte of the instruction is stored. The last content of MBR is the instruction
code (DEC 14, HEX 0E), while the MAR is prepared for fetching the next byte of instruction. The registers
A and B contain the same value due to previous instruction execution MOV B,A. After the decoding process,
the LCD screen on the control unit displays the full form of the instruction which is under execution (fig.
3.7). After instruction execution, the LCD screen displays the result (fig. 3.8) of the addition T1+T2 (T1=A
and T2=B). This result (dec 18, hex 12) is stored back in register A.
Figure 3.9 shows the HOMS status while the STOP instruction (dec 17, hex 11) is under execution for
program termination. The register A holds the addition result (dec 9+9=18, hex 9+9=12) and the PC register
points to next instruction starting address. Through the register MAR, the address 08 will be accessed for
fetching the first byte. After the first fetch, the content of register MBR is 11 (hex) which corresponds to
STOP instruction.

© Panayotis (Panos) Papazoglou Page 62

Fig. 3.6 Preparation (MAR) for fetching the second byte of the instruction

Fig. 3.7 Instruction under execution

Fig. 3.8 Addition result in ALU

© Panayotis (Panos) Papazoglou Page 63

Fig. 3.9 Just before program termination

© Panayotis (Panos) Papazoglou Page 64

© Panayotis (Panos) Papazoglou Page 65

CHAPTER 4
Build reference

4.1 Design files summary

The HOMS is an open-source educational project and the corresponding material for
building, programming, operating and customizing, is freely available to engineering
community and other relevant audience. Table 4.1 shows all the available files that are
available in order to reproduce, study and use of the proposed HOMS tool.

Table 4.1
Design files

Design file name File type Open source license

HOMS-CU.ino
Control Unit code

Arduino sketch CC BY NC SA

HOMS-REG.ino
Register Unit code

Arduino sketch CC BY NC SA

HOMS-ALU-SR.ino
Arithmetic & Logic Unit and
Status Register code

Arduino sketch CC BY NC SA

HOMS-MEM-OUT.ino
Memory data entry and
system output code

Arduino sketch CC BY NC SA

HOMS-7SD-DEMO.ino
Demo code for testing
seven segment display
module

Arduino sketch CC BY NC SA

BLOCK-A-WIR.pdf
Cable connections

Wiring diagram CC BY NC SA

BLOCK-B-WIR.pdf
Cable connections

Wiring diagram CC BY NC SA

BLOCK-C-WIR.pdf
Cable connections

Wiring diagram CC BY NC SA

BLOCK-D-WIR.pdf
Cable connections

Wiring diagram CC BY NC SA

SYSTEM-WIR.pdf
Wiring diagram of the
HOMS tool

Wiring diagram CC BY NC SA

HOMS-DIM.pdf
Component Dimensions

Dimension
diagram

CC BY NC SA

COMP-LIST.pdf
Component list

All components CC BY NC SA

SUP_PIC.pdf
Supplementary pictures

Various pictures CC BY NC SA

© Panayotis (Panos) Papazoglou Page 66

QUICK-GUIDE.pdf HOMS basic guide CC BY NC SA

HOMS-VIDEO.mp4
HOMS working

demo
CC BY NC SA

HOMS-VID-BS.mp4
HOMS

development video
samples

CC BY NC SA

4.2 Bill of materials summary
All the necessary components for building the HOMS tool are very common and can

be found in any local or international market. On the other hand, the block dimensions,
the lcd screens, the buttons, etc, can be very different as compared to the presented
HOMS tool implementation based on designer’s choices. Current implementation shows
how the concept of the object-oriented approach can be applied. Table 4.2 shows the
materials that have been used in HOMS tool as well as the corresponding cost (2023).

Table 4.2
Bill of materials

Designator Component Number
Cost

per unit
(€)

Total
cost (€)

Source of
materials

Microcontroller
(block types A,
B, C for control
unit, registers,
ALU/SR)

Arduino UNO
16MHz

(compatible
board)

10 8 80 (6)

Microcontroller
(block type D for
memory and
output system)

Arduino MEGA
2560

(compatible
board)

1 21 21 (6)

2-digit Display WHMXE-595-2 8 2.5 20 (6)

LCD Display 1602A 2 3.2 6.4 (6)

LCD/TFT
Display

2.4 Inch, LCDTFT 1 11.9 11.9 (6)

Power Supply 5V/5A 1 10 10 (6)

Potentiometer 10KΩ / Linear 2 0.5 1 (6)

Pot knobs Plastic 2 0.2 0.4 (6)

Illuminated
buttons

RED 3 1 3 (6)

Illuminated
buttons

GREEN 2 1 2 (6)

Resistor
150Ω, 1/4W, +/-

5%
5 0.01 0.05 (6)

Switch 3 pins 8 0.5 4 (6)

Screws and
bolts

For Arduino UNO
& MEGA

11 0.01 0.11 (6)

© Panayotis (Panos) Papazoglou Page 67

Screws and
bolts

For Block 46 0.02 0.92 (6)

Cable (1)
For 5V and SCK
(red 22 AWG)

2 0.4 0.8 (6)

Cable (1)
For Ground

(black 22 AWG)
1 0.4 0.4 (6)

Cable (1)
SDA connection
(yellow 22 AWG)

1 0.4 0.4 (6)

USB cable

Type A to type B,
free for every
new Arduino

board

1 0 0 (6)

MDF wooden
base (2)

Blocks A-B-C 10 0.25 2.5 (6)

MDF wooden
base (2)

Block D 1 0.35 0.35 (6)

Plexiglass (3) Blocks A-B-C 10 0.31 3.1 (6)

Plexiglass (3) Block D 1 0.95 0.95 (6)

OSB wooden
base (4)

For all blocks 2 1.05 2.1 (6)

Power cable (5)
Simple/double

2.5m
1 1 1 (6)

Power male
plug

Simple 1 1 1 (6)

Power switch Simple 1 1 1 (6)

Total cost 174.38
(1) The calculation is based on the cable reel price (7.5m)
(2) The calculation is based on a wooden piece price of 1m x 1m (please choose your desire wood type)
(3) The calculation is based on a plexiglass piece price of 1m x 1m
(4) The calculation is based on a wooden piece price of 1.25m x 0.4m (please choose your desire wood
type)
(5) The calculation is based on the cable price per meter (1m)
(6) Electronics and other components can be found in any local or international market. Moreover, many
components can be found in rejected materials from other applications and other can be built in the lab.

The suitcase where the HOMS has been installed is optional. Additionally, the designer can choose different
cables, buttons, switches, lcd screens, knobs, wood type, etc.

4.3 Build instructions

There is not any complexity regarding the HOMS tool construction. The eight of eleven
blocks are identical, and thus, if the designer constructs the first block, then the rest of
the procedure is easy due to reusability feature. The wooden base of all blocks has to be
drilled in order to place the Arduino above. The plexiglass has to be also drilled for placing
the seven segment display. Only few cables are needed for connecting seven segment
and LCD displays. On the other hand, the 2.4 inch LCDTFT screen is directly connected
on the Arduino MEGA 2560 board. Before the final placement of the constructed blocks,

© Panayotis (Panos) Papazoglou Page 68

software and connection tests have to be performed (please use the code HOMS-7SD-
DEMO.ino for testing the seven segment display module).

Figure 4.1 shows in single steps the construction of a HOMS tool block. Initially, the
wooden base is drilled for placing Arduino UNO (fig. 4.1-1, 4.1-2). Next, headers are
connected to pins that will be used for controlling the seven segment display module as
well as the power lines (fig. 4.1-3). The seven segment module is soldered using five
cables (three control cables and two for the power supply) and the final placement is
implemented on the plexiglass (fig. 4.1-4, 4.1-5). Finally, the block is completed by placing
the four metal spacers (wooden or plastic spacers can be also used) with screws and
bolts (fig. 4.1-6). The same construction concept is followed for all blocks in the HOMS
tool. The files BLOCK-A-WIR.pdf to BLOCK-D-WIR.pdf show the cable connections for
each block and the file SUP-PICS.pdf shows a rich picture collection for HOMS
construction, components, tools, etc.

Fig. 4.1 Building a block

For simplifying the common connections (I2C and GND), three metal wire lines are passed
over and under the Arduino boards (fig. 4.2). Thus, the cables from Arduino boards are
soldered to common wires (Yellow wire: SDA, Red wire: SCL and Black wire: GND). The
metal wires are stretched from point edges using screws that are embedded in the
wooden base.

© Panayotis (Panos) Papazoglou Page 69

Fig. 4.2 Metal wire lines for common connections

4.4 Operation instructions

After connecting common lines (I2C and GND), the 5V has to be also connected. The
HOMS tool works autonomously and thus no computer is needed. That means that the
5V supply has to be supported by an external power supply (PS). All the Arduino boards
(UNO and MEGA) need the same 5V voltage. For supplying Arduino boards with 5V
power, only the Vin pin will be used which is a common pin among Arduinos. In the current
implementation, an industrial-type PS is used (fig. 4.3). This PS it was already available
in the lab of the HOMS tool. A PS with current support up to 1.5A is enough. The PS in
the proposed HOMS tool has to be connected directly to 220V power line. For 110V power
line, the PS has to support different input. For connecting PS to power line, a single male
plug and wire can be used as well as a typical power switch (fig. 4.4).

Fig. 4.4 Male plug, cable and

switch

Fig. 4.5 Power from a

typical USB power supply

Fig. 4.3 External power supply (PS)

If the builder of the HOMS tool is not familiar with the power line connections, a classic
USB PS can be used as an alternative solution. As shown in fig. 4.5, a classic USB PS

© Panayotis (Panos) Papazoglou Page 70

can be combined with a USB cable. The cable is type-A to type-B, but the end has been
cut. The USB cable contains four internal cables with colors. A USB cable “transfers”
voltage via the red (5V) and black cable (GND). These internal cables have to be
connected to the common HOMS lines for the Arduino pin Vin.

Figure 4.6 shows the connection diagram for the whole HOMS tool regarding PS with
or without the industrial PS.

Fig. 4.6 Wiring diagram for I2C and Power Supply connections

© Panayotis (Panos) Papazoglou Page 71

About the author [Dr. Panayotis (Panos) Papazoglou]
Associate professor, Department of Digital Arts and Cinema, National and
Kapodistrian University of Athens.
He worked also as Lecturer, Assistant Professor and Associate Professor at
Technological Educational Institutes of Athens, Lamia and Central Greece,
Departments of Electronics, Computer Engineering (Head of Department 2015–2016)
and Electrical Engineering respectively. He teaches Computer Architecture and
Microprocessor programming for more than 25 years with a total academic
experience more than 27 years. Dr P. Papazoglou is the author of 14 scientific-

technical books (12 in Greek and 2 in English -Amazon, USA-) and has more than 50 publications in
international journals, book chapters and conferences. He is the author of the Greek best seller book
“Application Development with Arduino” and the most popular book about microprocessors.

This project did not receive any specific grant from funding agencies in the public, commercial,

or not-for-profit sectors.

References

P.M.Papazoglou, A Hybrid Simulation Platform for Learning Microprocessors, Computer Applications in
Engineering Education, 10.1002/cae.21921, (pp 655-674) WILEY, 2018

Website

https://homs.panospapazoglou.gr/

